Advanced Search+
Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688
Citation: Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688

Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air

Funds: This work was supported by China National Natural Science Foundation of Shaanxi Province (No. 2020JQ-643), China Postdoctoral Science Foundation funded project (No. 2019M653545), and the Fundamental Research Funds for the Central Universities, China (No. JB210510).
More Information
  • Received Date: April 14, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: May 27, 2021
  • The structure and propagation of the plasma in air breakdown driven by high-power microwave have attracted great interest. This paper focuses on the microwave amplitude and frequency dependence of plasma formation at atmospheric pressure using one two-dimensional model, which is based on Maxwell's equations coupled with plasma fluid equations. In this model, we adopt the effective electron diffusion coefficient, which can describe well the change from free diffusion in a plasma front to ambipolar diffusion in the bulk plasma. The filamentary plasma arrays observed in experiments are well reproduced in the simulations. The density and propagation speed of the plasma from the simulations are also close to the corresponding experimental data. The size of plasma filament parallel to the electric field decreases with increasing frequency, and it increases with the electric field amplitude. The distance between adjacent plasma filaments is close to one-quarter wavelength under different frequencies and amplitudes. The plasma propagation speed shows little change with the frequency, and it increases with the amplitude. The variations of plasma structure and propagation with the amplitude and frequency are due to the change in the distribution of the electric field.
  • [1]
    Zuo C-Y et al 2018 Acta Phys. Sin. 67 225201 (in Chinese)
    [2]
    Zhang C et al 2019 Plasma Sources Sci. Technol. 28 064001
    [3]
    Zhang J W et al 2020 J. Appl. Phys. 128 143301
    [4]
    Wang G et al 2020 Plasma Sci. Technol. 22 015404
    [5]
    Yao J F et al 2020 Plasma Sci. Technol. 22 034006
    [6]
    Liu Y et al 2019 Plasma Sci. Technol. 21 015402
    [7]
    Zhao P C and Guo L X 2018 IEEE Trans. Plasma Sci. 46 489
    [8]
    Semenov V E et al 2016 Phys. Plasmas 23 073109
    [9]
    Beeson S R et al 2014 IEEE Trans. Plasma Sci. 42 3450
    [10]
    Chang C et al 2014 Phys. Rev. E 90 063107
    [11]
    Morales K P et al 2006 IEEE Trans. Dielectr. Electr. Insul.13 803
    [12]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [13]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [14]
    Schaub S C et al 2016 Phys. Plasmas 23 083512
    [15]
    Nam S K and Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
    [16]
    Boeuf J P, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett.104 015002
    [17]
    Zhou Q H and Dong Z W 2011 Appl. Phys. Lett. 98 161504
    [18]
    Kourtzanidis K, Boeuf J P and Rogier F 2014 Phys. Plasmas 21 123513
    [19]
    Zhao P C, Guo L X and Shu P P 2016 Phys. Plasmas 23 092105
    [20]
    Takahashi M and Komurasaki K 2018 Adv. Phys: X 3 1417744
    [21]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [22]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [23]
    Chaudhury B, Boeuf J P and Zhu G Q 2010 Phys. Plasma 17 123505
    [24]
    Zhu G Q et al 2011 Plasma Sources Sci. Technol. 20 035007
    [25]
    Zhao P C et al 2014 Chin. Phys. B 23 055101
    [26]
    Woo W and DeGroot J 1984 Phys. Fluids 27 475
    [27]
    Chaudhury B and Boeuf J P 2010 IEEE Trans. Plasma Sci.38 2281
    [28]
    Mur G et al 1981 IEEE Trans. Electromagn. Compat. EMC23 377
    [29]
    Vikharev A L et al 1988 Sov. Phys. JETP 67 724
  • Cited by

    Periodical cited type(4)

    1. Zhao, P., Liu, Z., Wang, R. et al. Effect of desorbed gas on microwave breakdown on vacuum side of dielectric window. Plasma Science and Technology, 2024, 26(4): 045401. DOI:10.1088/2058-6272/ad0d58
    2. Gu, Y., Luo, W., Zhai, Y. et al. Two-Dimensional Model of Supersonic Expansion Argon Plasma in Micro Hollow Cathode Discharge: A Comparison of Maxwellian and Non-Maxwellian EEDFs. IEEE Transactions on Plasma Science, 2024, 52(10): 5062-5067. DOI:10.1109/TPS.2024.3388839
    3. Suzuki, S., Hamasaki, K., Takahashi, M. et al. Numerical analysis of structural change process in millimeter-wave discharge at subcritical intensity. Physics of Plasmas, 2022, 29(9): 093507. DOI:10.1063/5.0096363
    4. Fayazi, H., Lashak, A.B., Pahlavani, M.R.A. Numerical and Experimental Investigation of the Effects of Dimensional Parameters on Carbon-Nanotube-Coated Copper Plasma Limiter. IEEE Transactions on Plasma Science, 2022, 50(5): 1246-1254. DOI:10.1109/TPS.2022.3163200

    Other cited types(0)

Catalog

    Article views (129) PDF downloads (144) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return