Advanced Search+
Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688
Citation: Pengcheng ZHAO (赵朋程), Chao CHANG (常超), Panpan SHU (舒盼盼), Lixin GUO (郭立新). Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air[J]. Plasma Science and Technology, 2021, 23(8): 85003-085003. DOI: 10.1088/2058-6272/ac0688

Dependence of plasma structure and propagation on microwave amplitude and frequency during breakdown of atmospheric pressure air

Funds: This work was supported by China National Natural Science Foundation of Shaanxi Province (No. 2020JQ-643), China Postdoctoral Science Foundation funded project (No. 2019M653545), and the Fundamental Research Funds for the Central Universities, China (No. JB210510).
More Information
  • Received Date: April 14, 2021
  • Revised Date: May 26, 2021
  • Accepted Date: May 27, 2021
  • The structure and propagation of the plasma in air breakdown driven by high-power microwave have attracted great interest. This paper focuses on the microwave amplitude and frequency dependence of plasma formation at atmospheric pressure using one two-dimensional model, which is based on Maxwell's equations coupled with plasma fluid equations. In this model, we adopt the effective electron diffusion coefficient, which can describe well the change from free diffusion in a plasma front to ambipolar diffusion in the bulk plasma. The filamentary plasma arrays observed in experiments are well reproduced in the simulations. The density and propagation speed of the plasma from the simulations are also close to the corresponding experimental data. The size of plasma filament parallel to the electric field decreases with increasing frequency, and it increases with the electric field amplitude. The distance between adjacent plasma filaments is close to one-quarter wavelength under different frequencies and amplitudes. The plasma propagation speed shows little change with the frequency, and it increases with the amplitude. The variations of plasma structure and propagation with the amplitude and frequency are due to the change in the distribution of the electric field.
  • [1]
    Zuo C-Y et al 2018 Acta Phys. Sin. 67 225201 (in Chinese)
    [2]
    Zhang C et al 2019 Plasma Sources Sci. Technol. 28 064001
    [3]
    Zhang J W et al 2020 J. Appl. Phys. 128 143301
    [4]
    Wang G et al 2020 Plasma Sci. Technol. 22 015404
    [5]
    Yao J F et al 2020 Plasma Sci. Technol. 22 034006
    [6]
    Liu Y et al 2019 Plasma Sci. Technol. 21 015402
    [7]
    Zhao P C and Guo L X 2018 IEEE Trans. Plasma Sci. 46 489
    [8]
    Semenov V E et al 2016 Phys. Plasmas 23 073109
    [9]
    Beeson S R et al 2014 IEEE Trans. Plasma Sci. 42 3450
    [10]
    Chang C et al 2014 Phys. Rev. E 90 063107
    [11]
    Morales K P et al 2006 IEEE Trans. Dielectr. Electr. Insul.13 803
    [12]
    Hidaka Y et al 2008 Phys. Rev. Lett. 100 035003
    [13]
    Cook A, Shapiro M and Temkin R 2010 Appl. Phys. Lett. 97 011504
    [14]
    Schaub S C et al 2016 Phys. Plasmas 23 083512
    [15]
    Nam S K and Verboncoeur J P 2009 Phys. Rev. Lett. 103 055004
    [16]
    Boeuf J P, Chaudhury B and Zhu G Q 2010 Phys. Rev. Lett.104 015002
    [17]
    Zhou Q H and Dong Z W 2011 Appl. Phys. Lett. 98 161504
    [18]
    Kourtzanidis K, Boeuf J P and Rogier F 2014 Phys. Plasmas 21 123513
    [19]
    Zhao P C, Guo L X and Shu P P 2016 Phys. Plasmas 23 092105
    [20]
    Takahashi M and Komurasaki K 2018 Adv. Phys: X 3 1417744
    [21]
    Hidaka Y et al 2009 Phys. Plasmas 16 055702
    [22]
    Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
    [23]
    Chaudhury B, Boeuf J P and Zhu G Q 2010 Phys. Plasma 17 123505
    [24]
    Zhu G Q et al 2011 Plasma Sources Sci. Technol. 20 035007
    [25]
    Zhao P C et al 2014 Chin. Phys. B 23 055101
    [26]
    Woo W and DeGroot J 1984 Phys. Fluids 27 475
    [27]
    Chaudhury B and Boeuf J P 2010 IEEE Trans. Plasma Sci.38 2281
    [28]
    Mur G et al 1981 IEEE Trans. Electromagn. Compat. EMC23 377
    [29]
    Vikharev A L et al 1988 Sov. Phys. JETP 67 724
  • Related Articles

    [1]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [2]Zheng ZHANG (张政), Xueke CHE (车学科), Wangsheng NIE (聂万胜), Jinlong LI (李金龙), Tikai ZHENG (郑体凯), Liang LI (李亮), Qinya CHEN (陈庆亚), Zhi ZHENG (郑直). Study of vortex in flow fields induced by surface dielectric barrier discharge actuator at low pressure based on Q criterion[J]. Plasma Science and Technology, 2018, 20(1): 14006-014006. DOI: 10.1088/2058-6272/aa8e95
    [3]Jun CHEN (陈俊), Ruiji HU (胡睿佶), Bo LYU (吕波), Fudi WANG (王福地), Xiaojie WANG (王晓洁), Handong XU (徐旵东), Yingying LI (李颖颖), Jia FU (符佳), Xianghui YIN (尹相辉), Dajun WU (吴大俊), Fukun LIU (刘甫坤), Qing ZANG (臧庆), Haiqing LIU (刘海庆), Yuejiang SHI (石跃江), Shifeng MAO (毛世峰), Yi YU (余羿), Baonian WAN (万宝年), Minyou YE (叶民友), Yongcai SHEN (沈永才), EAST team. Observation and characterization of the effect of electron cyclotron waves on toroidal rotation in EAST L-mode discharges[J]. Plasma Science and Technology, 2017, 19(10): 105101. DOI: 10.1088/2058-6272/aa7cec
    [4]Guozhan LI (李国占), Jianyang YU (俞建阳), Huaping LIU (刘华坪), Fu CHEN (陈浮), Yanping SONG (宋彦萍). A saw-tooth plasma actuator for film cooling efficiency enhancement of a shaped hole[J]. Plasma Science and Technology, 2017, 19(8): 85505-085505. DOI: 10.1088/2058-6272/aa6744
    [5]Congxiang LU (陆从相), Chengwu YI (依成武), Rongjie YI (依蓉婕), Shiwen LIU (刘诗雯). Analysis of the operating parameters of a vortex electrostatic precipitator[J]. Plasma Science and Technology, 2017, 19(2): 25504-025504. DOI: 10.1088/2058-6272/19/2/025504
    [6]ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12
    [7]PAN Xiayun (潘夏云), WANG Fudi (王福地), ZHANG Xinjun (张新军), LYU Bo (吕波), CHEN Jun (陈俊), LI Yingying (李颖颖), FU Jia (符佳), SHI Yuejiang (石跃江), YU Yi (余羿), YE Minyou (叶民友), WAN Baonian (万宝年). Observation of Central Toroidal Rotation Induced by ICRF on EAST[J]. Plasma Science and Technology, 2016, 18(2): 114-119. DOI: 10.1088/1009-0630/18/2/03
    [8]ZHANG Zepin(张泽品), CHENG Zhifeng(程芝峰), LUO Jian(罗剑), WANG Zhijiang(王之江), ZHANG Xiaolong(张晓龙), HOU Saiying(侯赛英), CHENG Cheng(成诚). Implementation of Automatic Process of Edge Rotation Diagnostic System on J-TEXT Tokamak[J]. Plasma Science and Technology, 2014, 16(8): 789-793. DOI: 10.1088/1009-0630/16/8/10
    [9]LIU Xiaodong(刘晓东), FU Bao(付豹), ZHUANG Ming(庄明). The Design and Analysis of Helium Turbine Expander Impeller with a Given All-Over-Controlled Vortex Distribution[J]. Plasma Science and Technology, 2014, 16(3): 288-293. DOI: 10.1088/1009-0630/16/3/21
    [10]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
  • Cited by

    Periodical cited type(3)

    1. Choudhary, M.. A review on the vortex and coherent structures in dusty plasma medium. Journal of Plasma Physics, 2025, 91(1): E7. DOI:10.1017/S0022377824001636
    2. Abdirakhmanov, A.R., Kodanova, S.K., Ramazanov, T.S. Dynamics of dust particles in the glow discharge stratum in crossed E × B field. Contributions to Plasma Physics, 2023, 63(9-10): e202200148. DOI:10.1002/ctpp.202200148
    3. Gao, J., Guo, Z., Cai, Y. et al. Effect of Asymmetry Induced by Staggered Angle on the Rectification of Dust Particles in a Dusty Plasma Ratchet. IEEE Transactions on Plasma Science, 2021, 49(8): 2397-2400. DOI:10.1109/TPS.2021.3097736

    Other cited types(0)

Catalog

    Article views (129) PDF downloads (144) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return