Advanced Search+
Peizhen LI (李佩贞), Zhengchao DUAN (段正超), Tianliang ZHANG (张天亮), Feng HE (何锋), Ruoyu HAN (韩若愚), Jiting OUYANG (欧阳吉庭). Dynamics of plasma bullets by nanosecond pulsed micro-hollow cathode discharge within air[J]. Plasma Science and Technology, 2021, 23(8): 85401-085401. DOI: 10.1088/2058-6272/ac0719
Citation: Peizhen LI (李佩贞), Zhengchao DUAN (段正超), Tianliang ZHANG (张天亮), Feng HE (何锋), Ruoyu HAN (韩若愚), Jiting OUYANG (欧阳吉庭). Dynamics of plasma bullets by nanosecond pulsed micro-hollow cathode discharge within air[J]. Plasma Science and Technology, 2021, 23(8): 85401-085401. DOI: 10.1088/2058-6272/ac0719

Dynamics of plasma bullets by nanosecond pulsed micro-hollow cathode discharge within air

Funds: This work was supported by National Natural Science Foundation of China (No. 11 475 019).
More Information
  • Received Date: March 06, 2021
  • Revised Date: May 27, 2021
  • Accepted Date: May 31, 2021
  • In this paper, the air plasma jet produced by micro-hollow cathode discharge (MHCD) is investigated. The discharge is powered by a positive nanosecond pulse high voltage supply. The waveforms of the discharge, the images of the jet, the evolution of the plasma bullet and the reactive species are obtained to analyze the characteristics of the MHCD plasma jet. It is found that the length of the plasma jet is almost proportional to the air flow rate of 2–6 slm. Two plasma bullets appear one after another during a single period of the voltage waveform, and both of the two plasma bullets are formed during the positive pulse voltage off. The propagation velocity of the two plasma bullets is on the order of several hundred m/s, which is approximate to that of the air flow. These results indicate that the gas flow has an important influence on the formation of this MHCD plasma jet.
  • [1]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001
    [2]
    Foest R et al 2005 Plasma Phys. Control. Fusion 47 B525
    [3]
    Shaw D et al 2016 Plasma Sources Sci. Technol. 25 065018
    [4]
    Zhang P H et al 2020 Surf. Coat. Technol. 387 125511
    [5]
    Kolb J F et al 2008 Appl. Phys. Lett. 92 241501
    [6]
    Bekeschus S et al 2016 Clin. Plasma Med. 4 19
    [7]
    Winter J et al 2019 J. Phys. D: Appl. Phys. 52 024005
    [8]
    Zhang J S et al 2020 Plasma Process Polym. 17 1900213
    [9]
    Kondeti V S S K et al 2017 J. Vac. Sci. Technol. A 35 061302
    [10]
    Mun M K et al 2020 J. Nanopart. Res. 22 136
    [11]
    Laroussi M and Lu X 2005 Appl. Phys. Lett. 87 113902
    [12]
    Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 88 171501
    [13]
    Jiang N, Ji A L and Cao Z X 2010 J. Appl. Phys. 108 033302
    [14]
    Lu X P and Laroussi M 2006 J. Appl. Phys. 100 063302
    [15]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci.Technol. 21 034005
    [16]
    Hofmans M et al 2020 Plasma Sources Sci. Technol. 29 034003
    [17]
    Zhu P et al 2018 J. Phys. D: Appl. Phys. 51 405202
    [18]
    Zhang C et al 2014 Appl. Phys. Lett. 105 044102
    [19]
    Xiong Z et al 2010 J. Appl. Phys. 108 103303
    [20]
    Xian Y B et al 2012 Appl. Phys. Lett. 100 123702
    [21]
    Xian Y B et al 2013 Plasma Process Polym. 10 372
    [22]
    Lei J et al 2017 Phys. Plasmas 24 123515
    [23]
    Walsh J L and Kong M G 2011 Appl. Phys. Lett. 99 081501
    [24]
    Chen Z Q et al 2020 Plasma Sci. Technol. 22 085403
    [25]
    Hong Y C and Uhm H S 2007 Phys. Plasmas 14 053503
    [26]
    Mohamed A A H, Kolb J F and Schoenbach K H 2010 Eur.Phys. J. D 60 517
    [27]
    Xaubet M et al 2018 Plasma Process Polym. 15 1700211
    [28]
    Duan Z C et al 2021 Plasma Sources Sci. Technol. 30 025001
    [29]
    Oda T et al 2006 Thin Solid Films 506–507 669
  • Related Articles

    [1]Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817
    [2]Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e
    [3]Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789
    [4]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [5]Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19
    [6]Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b
    [7]LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10
    [8]LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02
    [9]SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02
    [10]LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19
  • Cited by

    Periodical cited type(1)

    1. Choi, M.-S., Kim, S.-J., Lee, Y.-S. et al. Computational Analysis on Self-Resonance Frequency of Solenoid and Planar Inductor. Applied Science and Convergence Technology, 2023, 32(2): 54-57. DOI:10.5757/ASCT.2023.32.2.54

    Other cited types(0)

Catalog

    Article views (140) PDF downloads (71) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return