Advanced Search+
Guimin XU (许桂敏), Yue GENG (耿悦), Xinzhe LI (李昕哲), Xingmin SHI (石兴民), Guanjun ZHANG (张冠军). Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of target[J]. Plasma Science and Technology, 2021, 23(9): 95401-095401. DOI: 10.1088/2058-6272/ac071a
Citation: Guimin XU (许桂敏), Yue GENG (耿悦), Xinzhe LI (李昕哲), Xingmin SHI (石兴民), Guanjun ZHANG (张冠军). Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of target[J]. Plasma Science and Technology, 2021, 23(9): 95401-095401. DOI: 10.1088/2058-6272/ac071a

Characteristics of a kHz helium atmospheric pressure plasma jet interacting with two kinds of target

Funds: This work was supported in part by the Scientific Innovation Practice Project of Postgraduates of Chang'an University (No. 300103714007), the Fundamental Research Funds for the Central Universities (No. 300102329301) and National Natural Science Foundation of China (No. 51677146).
More Information
  • Received Date: April 10, 2021
  • Revised Date: May 30, 2021
  • Accepted Date: May 31, 2021
  • Abstract This study investigates the influence of two types of target, skin tissue and cell culture medium, with different permittivities on a kHz helium atmospheric pressure plasma jet (APPJ) during its application for wound healing. The basic optical–electrical characteristics, the initiation and propagation and the emission spectra of the He APPJ under different working conditions are explored. The experimental results show that, compared with a jet freely expanding in air, the diameter and intensity of the plasma plume outside the nozzle increase when it interacts with the pigskin and cell culture medium targets, and the mean velocity of the plasma bullet from the tube nozzle to a distance of 15 mm is also significantly increased. There are also multiple increases in the relative intensity of OH (A2 Σ → X2 Π) and O (3p5 S–3s5 S) at a position 15 mm away from nozzle when the He APPJ interacts with cell culture medium compared with the air and pigskin targets. Taking the surface charging of the low permittivity material capacitance and the strengthened electric field intensity into account, they make the various characteristics of He APPJ interacting with two different targets together.
  • [1]
    Misra N N, Schlüter O and Cullen P J 2016 Cold Plasma in Food and Agriculture (Amsterdam: Elsevier) p 343
    [2]
    Ito M et al 2018 Plasma Process. Polym. 15 1700073
    [3]
    Shaw D et al 2016 Plasma Sources Sci. Technol. 25 065018
    [4]
    Cheng H et al 2020 Phys. Plasmas 27 063514
    [5]
    Laroussi M, Lu X and Keidar M 2017 J. Appl. Phys. 122 020901
    [6]
    Xu H et al 2019 Plasma Sci. Technol. 21 115502
    [7]
    Gidon D, Graves D B and Mesbah A 2017 Plasma Sources Sci.Technol. 26 085005
    [8]
    Zang Q X et al 2020 Plasma Sci. Technol. 22 025503
    [9]
    Xu Z M et al 2020 Plasma Sci. Technol. 22 103001
    [10]
    Winter J, Brandenburg R and Weltmann K D 2015 Plasma Sources Sci. Technol. 24 064001
    [11]
    Kovačević V V et al 2018 J. Phys. D: Appl. Phys. 51 065202
    [12]
    Sobota A, Guaitella O and Rousseau A 2014 Plasma Sources Sci. Technol. 23 025016
    [13]
    Chen Z Q et al 2020 Plasma Sci. Technol. 22 085403
    [14]
    Lu X, Laroussi M and Puech V 2012 Plasma Sources Sci.Technol. 21 034005
    [15]
    Boeuf J P, Yang L L and Pitchford L C 2013 J. Phys. D: Appl.Phys. 46 015201
    [16]
    Wu S et al 2013 Phys. Plasmas 20 023503
    [17]
    Norberg S A, Johnsen E and Kushner M J 2015 J. Appl. Phys.118 013301
    [18]
    Darny T et al 2017 Plasma Sources Sci. Technol. 26 105001
    [19]
    Robert E et al 2014 Plasma Sources Sci. Technol. 23 012003
    [20]
    Sobota A et al 2019 Plasma Sources Sci. Technol. 28 045003
    [21]
    Breden D and Raja L L 2014 Plasma Sources Sci. Technol. 23 065020
    [22]
    Wang L J, Zheng Y S and Jia S L 2016 Phys. Plasmas 23 103504
    [23]
    Von Woedtke T et al 2013 Phys. Rep. 530 219
    [24]
    Xu G M et al 2019 High Voltage Eng. 45 1375 (in Chinese)
    [25]
    Chen C et al 2018 Plasma Chem. Plasma Process. 38 89
    [26]
    Seo B H et al 2015 Phys. Plasmas 22 123502
    [27]
    Oh J S et al 2016 J. Phys. D: Appl. Phys. 49 304005
    [28]
    Gaur N et al 2015 Appl. Phys. Lett. 107 103703
    [29]
    Duan J, Lu X and He G 2017 Phys. Plasmas 24 073506
    [30]
    Mohades S et al 2016 Plasma Process. Polym. 13 1206
    [31]
    Xu G M et al 2020 IEEE Trans. Plasma Sci. 48 587
    [32]
    Liu J R et al 2019 J. Phys. D: Appl. Phys. 52 315204
    [33]
    Xin S J et al 2007 J. Clin. Dermatol. 36 289 (in Chinese)
    [34]
    Gabriel S, Lau R W and Gabriel C 1996 Phys. Med. Biol.41 2271
    [35]
    Hou S Y et al 2014 High Voltage Eng. 40 1207 (in Chinese)
    [36]
    Kone A et al 2017 Plasma Med. 7 333
    [37]
    Lee H W et al 2010 Plasma Process. Polym. 7 274
    [38]
    Shao X J et al 2012 Appl. Phys. Lett. 101 253509
    [39]
    Yang Y et al 2018 IEEE Trans. Radiat. Plasma Med. Sci.2 223
    [40]
    Norberg S A et al 2014 J. Phys. D: Appl. Phys. 47 475203
    [41]
    Gazeli K et al 2015 J. Appl. Phys. 117 093302
    [42]
    Begum A, Laroussi M and Pervez M R 2013 AIP Adv. 3 062117
  • Related Articles

    [1]Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
    [2]Min WANG, Qingmei XIAO, Xiaogang WANG, Daoyuan LIU. Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST[J]. Plasma Science and Technology, 2022, 24(1): 015101. DOI: 10.1088/2058-6272/ac320f
    [3]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [4]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [5]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [6]YANG Yu (杨愚), S. MARUYAMA, G. KISS, LI Wei (李伟), JIANG Tao (江涛), LI Bo (李波). Conceptual Design of the ITER Gas Injection System[J]. Plasma Science and Technology, 2013, 15(3): 287-290. DOI: 10.1088/1009-0630/15/3/19
    [7]P Klaywittaphat, T Onjun. Scaling of the density peak with pellet injection in ITER[J]. Plasma Science and Technology, 2012, 14(12): 1035-1040. DOI: 10.1088/1009-0630/14/12/01
    [8]SHENG Zhicai(Cheng-Zhi-Cai-), FU Peng (Fu-Feng-), XU Xiuwei (Hu-Liu-Wei-). Dynamic performance of the ITER reactive power compensation system[J]. Plasma Science and Technology, 2011, 13(5): 637-640.
    [9]KANG Weishan(康伟山), CHEN Jiming(谌继明), WU Jihong(吴继红). Analysis and Optimization of Cooling Channels in ITER Blanket Module[J]. Plasma Science and Technology, 2010, 12(5): 628-631.
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Article views (143) PDF downloads (175) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return