Advanced Search+
Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd
Citation: Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd

Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak

Funds: This work is supported by National Natural Science Foundation of China (Nos. 12075057, 11775069, 11320101005, 51821005 and 11875020); Jiangxi Provincial Natural Science Foundation (No. 20202ACBL201002) and Doctoral Foundation (Nos. DHBK2017134 and DHBK 2018059); and Grant-in-Aid for Scientific Research of JSPS (Nos. 15H02155, 15H02335, 16H02442).
More Information
  • Received Date: February 09, 2021
  • Revised Date: June 15, 2021
  • Accepted Date: June 17, 2021
  • The toroidal component of the velocity for geodesic acoustic modes (GAMs) is first demonstrated. Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study. A significant peak at the GAM frequency is observed in Mach number fluctuations. The toroidal velocity for the GAMs is estimated as ∼10–100 m s−1 and increases with the poloidal velocity. The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0. With higher safety factors q, the ratio almost does not change with decreasing the safety factor, whereas it goes up sharply at low q. The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated, and are higher than those between radial electric fields and Mach number fluctuations.
  • [1]
    Biglari H, Diamond P H and Terry P W 1990 Phys. Fluids B Plasma Phys. 2 1
    [2]
    Itoh S I and Itoh K 1988 Phys. Rev. Lett. 60 2276
    [3]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [4]
    Hasegawa A and Wakatani M 1987 Phys. Rev. Lett. 59 1581
    [5]
    Diamond P H et al 1994 Phys. Rev. Lett. 72 2565
    [6]
    Miki K and Diamond P H 2010 Phys. Plasmas 17 032309
    [7]
    Chen L, Lin Z H and White R 2000 Phys. Plasmas 7 3129
    [8]
    Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
    [9]
    McKee G R et al 2003 Phys. Plasmas 10 1712
    [10]
    Zhao K J et al 2006 Phys. Rev. Lett. 96 255004
    [11]
    Xu G S et al 2003 Phys. Rev. Lett. 91 125001
    [12]
    Fujisawa A et al 2004 Phys. Rev. Lett. 93 165002
    [13]
    Gupta D K et al 2006 Phys. Rev. Lett. 97 125002
    [14]
    Zhao K J et al 2010 Plasma Phys. Control. Fusion 52 124008
    [15]
    Liu A D et al 2009 Phys. Rev. Lett. 103 095002
    [16]
    Krämer-Flecken A et al 2006 Phys. Rev. Lett. 97 045006
    [17]
    Xu M et al 2012 Phys. Rev. Lett. 108 245001
    [18]
    Kobayashi T et al 2018 Phys. Rev. Lett. 120 045002
    [19]
    Shafer M W et al 2009 Phys. Rev. Lett. 103 075004
    [20]
    Estrada T et al 2011 Phys. Rev. Lett. 107 245004
    [21]
    Pedrosa M A et al 2008 Phys. Rev. Lett. 100 215003
    [22]
    Zhuang G et al 2011 Nucl. Fusion 51 094020
    [23]
    Zhao K J et al 2015 Nucl. Fusion 55 073022
    [24]
    Itoh K et al 2016 Plasma Fusion Res. 11 1402002
    [25]
    Zhao K J et al 2020 Nucl. Fusion 60 106030
    [26]
    Zhao K J et al 2018 Plasma Sci. Technol. 20 094006
  • Related Articles

    [1]Haowei ZHANG, Zhiwei MA. Validation of the current and pressure coupling schemes with nonlinear simulations of TAE and analysis on the linear stability of tearing mode in the presence of energetic particles[J]. Plasma Science and Technology, 2023, 25(4): 045105. DOI: 10.1088/2058-6272/aca6c0
    [2]Renchuan HE, Xiaoyi YANG, Chijie XIAO, Xiaogang WANG, Tianchao XU, Zhibin GUO, Yue GE, Xiuming YU, Zuyu ZHANG, Rui KE, Ruixin YUAN. Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls[J]. Plasma Science and Technology, 2022, 24(11): 115001. DOI: 10.1088/2058-6272/ac770b
    [3]Zhenghao REN (任政豪), Jinyuan LIU (刘金远), Feng WANG (王丰), Huishan CAI (蔡辉山), Zhengxiong WANG (王正汹), Wei SHEN (申伟). Influence of toroidal rotation on the tearing mode in tokamak plasmas[J]. Plasma Science and Technology, 2020, 22(6): 65102-065102. DOI: 10.1088/2058-6272/ab77d4
    [4]Jie HUANG (黄杰), Yasuhiro SUZUKI (铃木康浩), Yunfeng LIANG (梁云峰), Manni JIA (贾曼妮), Youwen SUN (孙有文), Nan CHU (楚南), Jichan XU (许吉禅), Muquan WU (吴木泉), EAST team. Magnetic field topology modeling under resonant magnetic perturbations on EAST[J]. Plasma Science and Technology, 2019, 21(6): 65105-065105. DOI: 10.1088/2058-6272/ab0d35
    [5]Weikang TANG (汤炜康), Lai WEI (魏来), Zhengxiong WANG (王正汹), Jialei WANG (王佳磊), Tong LIU (刘桐), Shu ZHENG (郑殊). Effects of resonant magnetic perturbation on locked mode of neoclassical tearing modes[J]. Plasma Science and Technology, 2019, 21(6): 65103-065103. DOI: 10.1088/2058-6272/ab0a18
    [6]Ding LI (李定), Wen YANG (杨文), Huishan CAI (蔡辉山). On theoretical research for nonlinear tearing mode[J]. Plasma Science and Technology, 2018, 20(9): 94002-094002. DOI: 10.1088/2058-6272/aabde4
    [7]Guo XU (徐国), Bo RAO (饶波), Yonghua DING (丁永华), Mao LI (李茂), Da LI (李达), Ruo JIA (贾若), Minxiong YAN (严民雄), Xinke JI (吉新科), Nengchao WANG (王能超), Zhuo HUANG (黄卓), Daojing GUO (郭道靖), Lai PENG (彭莱). Power supply for generating frequency-variable resonant magnetic perturbations on the J-TEXT tokamak[J]. Plasma Science and Technology, 2018, 20(8): 85601-085601. DOI: 10.1088/2058-6272/aabd2f
    [8]LIN Zhihong (林志宏), S. ETHIER, T. S. HAHM, W. M. TANG. Verification of Gyrokinetic Particle Simulation of Device Size Scaling of Turbulent Transport[J]. Plasma Science and Technology, 2012, 14(12): 1125-1126. DOI: 10.1088/1009-0630/14/12/17
    [9]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [10]HAO Changduana(郝长端), ZHANG Minga(张明), DING Yonghua(丁永华), RAO Boa(饶波), CEN Yishuna(岑义顺), ZHUANG Ge(庄革). Stress and Thermal Analysis of the In-Vessel Resonant Magnetic Perturbation Coils on the J-TEXT Tokamak[J]. Plasma Science and Technology, 2012, 14(1): 83-88. DOI: 10.1088/1009-0630/14/1/18

Catalog

    Article views (121) PDF downloads (92) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return