Advanced Search+
Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd
Citation: Yaoyu XIE (谢耀禹), Kaijun ZHAO (赵开君), Zhipeng CHEN (陈志鹏), Jiaqi DONG (董家齐), Kimitaka ITOH, Zhongyong CHEN (陈忠勇), Yuejiang SHI (石跃江), Yonghua DING (丁永华), Jun CHENG (程钧), Longwen YAN (严龙文), Hai LIU (刘海), Zhifeng CHENG (程芝峰), Zhoujun YANG (杨州军), Nengchao WANG (王能超), Lu WANG (王璐), Jianqiang XU (许健强), Yunfeng LIANG (梁云峰), J-TEXT Team. Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak[J]. Plasma Science and Technology, 2021, 23(10): 105102. DOI: 10.1088/2058-6272/ac0ccd

Toroidal component of velocity for geodesic acoustic modes in the edge plasmas of the J-TEXT tokamak

Funds: This work is supported by National Natural Science Foundation of China (Nos. 12075057, 11775069, 11320101005, 51821005 and 11875020); Jiangxi Provincial Natural Science Foundation (No. 20202ACBL201002) and Doctoral Foundation (Nos. DHBK2017134 and DHBK 2018059); and Grant-in-Aid for Scientific Research of JSPS (Nos. 15H02155, 15H02335, 16H02442).
More Information
  • Received Date: February 09, 2021
  • Revised Date: June 15, 2021
  • Accepted Date: June 17, 2021
  • The toroidal component of the velocity for geodesic acoustic modes (GAMs) is first demonstrated. Multiple Langmuir probe arrays set up near the top tokamak of the J-TEXT were utilized for this study. A significant peak at the GAM frequency is observed in Mach number fluctuations. The toroidal velocity for the GAMs is estimated as ∼10–100 m s−1 and increases with the poloidal velocity. The ratio of toroidal component to the poloidal one of the velocity is mainly located in the interval between 0.3 and 1.0. With higher safety factors q, the ratio almost does not change with decreasing the safety factor, whereas it goes up sharply at low q. The coherencies between poloidal electric fields and Mach number fluctuations in turbulence frequency bands are also evaluated, and are higher than those between radial electric fields and Mach number fluctuations.
  • [1]
    Biglari H, Diamond P H and Terry P W 1990 Phys. Fluids B Plasma Phys. 2 1
    [2]
    Itoh S I and Itoh K 1988 Phys. Rev. Lett. 60 2276
    [3]
    Diamond P H et al 2005 Plasma Phys. Control. Fusion 47 R35
    [4]
    Hasegawa A and Wakatani M 1987 Phys. Rev. Lett. 59 1581
    [5]
    Diamond P H et al 1994 Phys. Rev. Lett. 72 2565
    [6]
    Miki K and Diamond P H 2010 Phys. Plasmas 17 032309
    [7]
    Chen L, Lin Z H and White R 2000 Phys. Plasmas 7 3129
    [8]
    Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448
    [9]
    McKee G R et al 2003 Phys. Plasmas 10 1712
    [10]
    Zhao K J et al 2006 Phys. Rev. Lett. 96 255004
    [11]
    Xu G S et al 2003 Phys. Rev. Lett. 91 125001
    [12]
    Fujisawa A et al 2004 Phys. Rev. Lett. 93 165002
    [13]
    Gupta D K et al 2006 Phys. Rev. Lett. 97 125002
    [14]
    Zhao K J et al 2010 Plasma Phys. Control. Fusion 52 124008
    [15]
    Liu A D et al 2009 Phys. Rev. Lett. 103 095002
    [16]
    Krämer-Flecken A et al 2006 Phys. Rev. Lett. 97 045006
    [17]
    Xu M et al 2012 Phys. Rev. Lett. 108 245001
    [18]
    Kobayashi T et al 2018 Phys. Rev. Lett. 120 045002
    [19]
    Shafer M W et al 2009 Phys. Rev. Lett. 103 075004
    [20]
    Estrada T et al 2011 Phys. Rev. Lett. 107 245004
    [21]
    Pedrosa M A et al 2008 Phys. Rev. Lett. 100 215003
    [22]
    Zhuang G et al 2011 Nucl. Fusion 51 094020
    [23]
    Zhao K J et al 2015 Nucl. Fusion 55 073022
    [24]
    Itoh K et al 2016 Plasma Fusion Res. 11 1402002
    [25]
    Zhao K J et al 2020 Nucl. Fusion 60 106030
    [26]
    Zhao K J et al 2018 Plasma Sci. Technol. 20 094006
  • Related Articles

    [1]Zhaoyang LIU (刘朝阳), Yangzhong ZHANG (章扬忠), Swadesh Mitter MAHAJAN, Adi LIU (刘阿娣), Tao XIE (谢涛), Chu ZHOU (周楚), Tao LAN (兰涛), Jinlin XIE (谢锦林), Hong LI (李弘), Ge ZHUANG (庄革), Wandong LIU (刘万东). The theoretical study on intermittency and propagation of geodesic acoustic mode in L-mode discharge near tokamak edge[J]. Plasma Science and Technology, 2021, 23(3): 35101-035101. DOI: 10.1088/2058-6272/abdc13
    [2]Yunxiao WEI (魏云逍), Zhe GAO (高喆). Effect of background fluctuation on velocity diagnostics by Mach probe[J]. Plasma Science and Technology, 2020, 22(12): 125102. DOI: 10.1088/2058-6272/abbb79
    [3]Wenjia WANG (王文家), Deng ZHOU (周登), Yue MING (明玥). The residual zonal flow in tokamak plasmas with a poloidal electric field[J]. Plasma Science and Technology, 2019, 21(1): 15101-015101. DOI: 10.1088/2058-6272/aadd8e
    [4]K J ZHAO (赵开君), J Q DONG (董家齐), J Q LI (李继全), LW YAN (严龙文). A brief review: experimental investigation of zonal flows and geodesic acoustic modes in fusion plasmas[J]. Plasma Science and Technology, 2018, 20(9): 94006-094006. DOI: 10.1088/2058-6272/aad382
    [5]Yue MING (明玥), Deng ZHOU (周登), Wenjia WANG (王文家). Geodesic acoustic modes in tokamak plasmas with anisotropic distribution and a radial equilibrium electric field[J]. Plasma Science and Technology, 2018, 20(8): 85101-085101. DOI: 10.1088/2058-6272/aabc5c
    [6]Haijun REN (任海骏). Geodesic acoustic mode in a reduced two-fluid model[J]. Plasma Science and Technology, 2017, 19(12): 122001. DOI: 10.1088/2058-6272/aa936f
    [7]Rokibul ISLAM, Shuzheng XIE, Karl R ENGLUND, Patrick D PEDROW. Plasma polymerized acetylene deposition using a return corona enhanced plasma reactor[J]. Plasma Science and Technology, 2017, 19(8): 85501-085501. DOI: 10.1088/2058-6272/aa6bef
    [8]R. KHOSHKHOO, A. JAHANGIRIAN. Numerical Simulation of Stall Flow Control Using a DBD Plasma Actuator in Pulse Mode[J]. Plasma Science and Technology, 2016, 18(9): 933-942. DOI: 10.1088/1009-0630/18/9/10
    [9]ZHANG Shuangxi(张双喜), GAO Zhe(高喆), WU Wentao(武文韬), QIU Zhiyong(仇志勇). Damping of Geodesic Acoustic Mode by Trapped Electrons[J]. Plasma Science and Technology, 2014, 16(7): 650-656. DOI: 10.1088/1009-0630/16/7/04
    [10]T. WATARI, Y. HAMADA. Linear Gyro-Kinetic Response Function for Zonal Flows[J]. Plasma Science and Technology, 2011, 13(2): 157-161.
  • Cited by

    Periodical cited type(2)

    1. Chen, Z., Huang, Z., Jiang, M. et al. J-TEXT achievements in turbulence and transport in support of future device/reactor. Plasma Science and Technology, 2024, 26(11): 114001. DOI:10.1088/2058-6272/ad663b
    2. Zhang, J., Zhao, K., Yang, Z. et al. Turbulence spreading and its effects on the edge flows and turbulence during sawtooth cycles in the J-TEXT tokamak plasmas. Physics of Plasmas, 2023, 30(8): 082305. DOI:10.1063/5.0153055

    Other cited types(0)

Catalog

    Article views (121) PDF downloads (92) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return