Advanced Search+
Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA, Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI, Shiori SUEYASU, Shu WATANABE, Keitaro NAKAMURA. Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2021, 23(10): 105505. DOI: 10.1088/2058-6272/ac0ed9
Citation: Naw Rutha PAW, Takuma KIMURA, Tatsuo ISHIJIMA, Yasunori TANAKA, Yusuke NAKANO, Yoshihiko UESUGI, Shiori SUEYASU, Shu WATANABE, Keitaro NAKAMURA. Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor[J]. Plasma Science and Technology, 2021, 23(10): 105505. DOI: 10.1088/2058-6272/ac0ed9

Surface treatment of titanium dioxide nanopowder using rotary electrode dielectric barrier discharge reactor

More Information
  • Received Date: April 21, 2021
  • Revised Date: June 17, 2021
  • Accepted Date: June 26, 2021
  • Titanium dioxide (TiO2) nanopowder (P-25; Degussa AG) was treated using dielectric barrier discharge (DBD) in a rotary electrode DBD (RE-DBD) reactor. Its electrical and optical characteristics were investigated during RE-DBD generation. The treated TiO2 nanopowder properties and structures were analyzed using x-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR). After RE-DBD treatment, XRD measurements indicated that the anatase peak theta positions shifted from 25.3° to 25.1°, which can be attributed to the substitution of new functional groups in the TiO2 lattice. The FTIR results show that hydroxyl groups (OH) at 3400 cm−1 increased considerably. The mechanism used to modify the TiO2 nanopowder surface by air DBD treatment was confirmed from optical emission spectrum measurements. Reactive species, such as OH radical, ozone and atomic oxygen can play key roles in hydroxyl formation on the TiO2 nanopowder surface.
  • [1]
    Hashimoto K, Irie H and Fujishima A 2005 Jpn. J. Appl. Phys.44 8269
    [2]
    Nakata K and Fujishima A 2012 J. Photochem. Photobiol. C 13 169
    [3]
    Rahimi N, Pax R A and Gray E M 2016 Prog. Solid State Chem. 44 86
    [4]
    Zhang Y Y et al 2008 Appl. Surf. Sci. 254 5545
    [5]
    Paz Y 2010 Appl. Catal. B: Environ. 99 448
    [6]
    Li D et al 2005 Chem. Mater. 17 2596
    [7]
    Fujishima A, Zhang X T and Tryk D A 2007 Int. J. Hydrogen Energy 32 2664
    [8]
    Wang R et al 1997 Nature 388 431
    [9]
    Lu X H et al 2012 Nano Lett. 12 1690
    [10]
    Asahi R et al 2001 Science 293 269
    [11]
    Nebel C E 2013 Nat. Mater. 12 780
    [12]
    Khairy M and Zakaria W 2014 Egypt. J. Pet. 23 419
    [13]
    Yang X X et al 2009 Appl. Catal. B: Environ. 91 657
    [14]
    Kokare B N et al 2012 Sci. World J. 2012 856948
    [15]
    Choi H J and Kang M 2007 Int. J. Hydrogen Energy 32 3841
    [16]
    Burda C et al 2003 Nano Lett. 3 1049
    [17]
    Lu J et al 2017 Dyes Pigm. 144 203
    [18]
    Xing M Y et al 2011 Chem. Commun. 47 4947
    [19]
    Amano F et al 2016 J. Phys. Chem. C 120 6467
    [20]
    Shin J Y et al 2012 Chem. Mater. 24 543
    [21]
    Liu Y M et al 2015 RSC Adv. 5 61657
    [22]
    Chen X B 2011 Science 331 746
    [23]
    Konstantakou M et al 2014 J. Phys. Chem. 118 16760
    [24]
    Wagner H E et al 2003 Vacuum 71 417
    [25]
    Wahyudiono et al 2020 ACS Omega 5 5443
    [26]
    Li Y Q et al 2019 Nanomaterials 9 720
    [27]
    Lerouge S, Wertheimer M R and Yahia L H 2001 Plasmas Polym. 6 175
    [28]
    Abourayana H M et al 2017 Plasma Chem. Plasma Process.37 1223
    [29]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [30]
    Brandenburg R 2017 Plasma Sources Sci. Technol. 26 053001
    [31]
    Mastanaiah N et al 2013 Plasma Process. Polym. 10 1120
    [32]
    Abdelaziz A A et al 2016 Plasma Sources Sci. Technol. 25 035012
    [33]
    Voráč J, Kusýn L and Synek P 2019 Rev. Sci. Instrum. 90 123102
    [34]
    Voráč J et al 2017 Plasma Sources Sci. Technol. 26 025010
    [35]
    Voráč J et al 2017 J. Phys. D: Appl. Phys. 50 294002
    [36]
    Tian F et al 2015 Nanoscale Res. Lett. 10 360
    [37]
    Theivasanthi T, Kartheeswari N and Alagar M 2013 Chem. Sci.Trans. 2 497
    [38]
    Kang X L et al 2019 Catalysts 9 191
    [39]
    Rajender G, Kumar J and Giri P K 2018 Appl. Catal. B:Environ. 224 960
    [40]
    Delgado M R and Arean C O 2011 Energy 36 5286
    [41]
    Li K M et al 2014 J. Phys. Chem. C 118 2454
    [42]
    Kang I C et al 2008 Appl. Catal. B: Environ. 80 81
    [43]
    Lee J, Kim J and Hyeon T 2006 Adv. Mater. 18 2073
  • Related Articles

    [1]Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437
    [2]Vukoman JOKANOVIC, Bozana COLOVIC, Anka TRAJKOVSKA PETKOSKA, Ana MRAKOVIC, Bojan JOKANOVIC, Milos NENADOVIC, Manuela FERRARA, Ilija NASOV. Optical properties of titanium oxide films obtained by cathodic arc plasma deposition[J]. Plasma Science and Technology, 2017, 19(12): 125504. DOI: 10.1088/2058-6272/aa8806
    [3]Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f
    [4]LIU Meng (刘猛), HE Tie (何铁), YAN Jie (言杰), KE Jianlin (柯建林), LIN Jufang (林菊芳), LU Biao (卢彪). Damage Characteristics of TiD2 Films Irradiated by a Mixed Pulsed Beam of Titanium and Hydrogen Ions[J]. Plasma Science and Technology, 2016, 18(7): 764-767. DOI: 10.1088/1009-0630/18/7/11
    [5]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [6]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [7]Navaneetha Pandiyaraj KRISHNASAMY, Heeg JAN, Barfels TORSTEN, Wienecke MARION, Ha Rhee YOUNG, Woo Kim HYOUNG. In vitro cyto and Blood Compatibility of Titanium Containing Diamond-Like Carbon Prepared by Hybrid Sputtering Method[J]. Plasma Science and Technology, 2012, 14(9): 829-836. DOI: 10.1088/1009-0630/14/9/11
    [8]SUN Yanpeng (孙艳朋), NIE Yong (聂勇), WU Angshan (吴昂山), JI Dengxiang(姬登祥), YU Fengwen (于凤文), JI Jianbing (计建炳. Carbon Dioxide Reforming of Methane to Syngas by Thermal Plasma[J]. Plasma Science and Technology, 2012, 14(3): 252-256. DOI: 10.1088/1009-0630/14/3/12
    [9]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
    [10]YE Wenting(叶文婷), WU Di(吴迪), PAN Xin(潘欣), CHEN Yashao(陈亚芍), HAN Yong(憨勇), SONG Zhongxiao(宋忠孝). Preparation of Chitosan Coatings Containing Calcium and Phosphorus on Titanium Surface by the Cathode Liquid Phase Plasma Technology[J]. Plasma Science and Technology, 2010, 12(5): 614-618.
  • Cited by

    Periodical cited type(5)

    1. Yan, Y., Yang, X., Ning, P. et al. Cu/TiO2 adsorbents modified by air plasma for adsorption–oxidation of H2S. Journal of Environmental Sciences (China), 2025. DOI:10.1016/j.jes.2023.09.023
    2. Yu, G., Peng, B., Jiang, N. et al. Influence of rotating dielectric barrier on discharge characteristics in multi-needle-plate DBD. Plasma Processes and Polymers, 2024, 21(4): 2300176. DOI:10.1002/ppap.202300176
    3. Truong, V.N., Truong, H.T., Siregar, Y. et al. Atmospheric Pressure Plasma Jet (APPJ) Generation using Industrial Frequency Alternative Power Source. 2024. DOI:10.1109/ATiGB63471.2024.10717715
    4. Yu, G., Jiang, N., Peng, B. et al. Study on the plasma characteristics in a needle-plate dielectric barrier discharge with a rotating dielectric plate. Journal of Applied Physics, 2023, 133(8): 083302. DOI:10.1063/5.0136280
    5. Huang, Y., Qing, Y., Chen, Y. et al. NiFe Nanoparticle Encapsulated into Wood Carbon for Efficient Oxygen Evolution: Effect of Wood Delignification. ACS Sustainable Chemistry and Engineering, 2022, 10(46): 15233-15242. DOI:10.1021/acssuschemeng.2c04902

    Other cited types(0)

Catalog

    Article views (105) PDF downloads (95) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return