Advanced Search+
Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d
Citation: Zhe DING (丁哲), Jingfeng YAO (姚静锋), Ying WANG (王莹), Chengxun YUAN (袁承勋), Zhongxiang ZHOU (周忠祥), Anatoly A KUDRYAVTSEV, Ruilin GAO (高瑞林), Jieshu JIA (贾洁姝). Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column[J]. Plasma Science and Technology, 2021, 23(9): 95403-095403. DOI: 10.1088/2058-6272/ac125d

Machine learning combined with Langmuir probe measurements for diagnosis of dusty plasma of a positive column

  • This paper reports the use of machine learning to enhance the diagnosis of a dusty plasma. Dust in a plasma has a large impact on the properties of the plasma. According to a probe diagnostic experiment on a dust-free plasma combined with machine learning, an experiment on a dusty plasma is designed and carried out. Using a specific experimental device, dusty plasma with a stable and controllable dust particle density is generated. A Langmuir probe is used to measure the electron density and electron temperature under different pressures, discharge currents, and dust particle densities. The diagnostic result is processed through a machine learning algorithm, and the error of the predicted results under different pressures and discharge currents is analyzed, from which the law of the machine learning results changing with the pressure and discharge current is obtained. Finally, the results are compared with theoretical simulations to further analyze the properties of the electron density and temperature of the dusty plasma.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return