Citation: | Xinwei CHEN (陈新伟), Zuo GU (顾左), Jun GAO (高俊), Shangmin WANG (王尚民), Tao CHEN (陈焘), Ning GUO (郭宁), Sanxiang YANG (杨三祥), Chao LIU (刘超). The far-field plasma characteristics of LHT40 low-power Hall thruster for commercial aerospace applications[J]. Plasma Science and Technology, 2021, 23(10): 104009. DOI: 10.1088/2058-6272/ac15eb |
[1] |
Mazouffre S 2016 Plasma Sources Sci. Technol. 25 033002
|
[2] |
Raitses Y and Fisch N J 2001 Phys. Plasmas 8 2579
|
[3] |
Morozov A I and Savelyev V V 2000 Fundamentals of stationary plasma thruster theory ed B B Kadomtsev and V D Shafranov Reviews of Plasma Physics (Boston:Springer)
|
[4] |
Pidgeon D et al 2006 Two years of on-orbit performance of SPT-100 electric propulsion Proc. 24th AIAA Int.Communications Satellite Systems Conf. (California)(AIAA) (https://doi.org/10.2514/6.2006-5353)
|
[5] |
De Grys K et al 2017 Demonstration of 10,400 h of operation on 4.5 kW qualification model hall thruster Proc. 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Nashville TN) (AIAA) (https://doi.org/10.2514/6.2010-6698)
|
[6] |
Dudeck M et al 2011 Rom. J. Phys. 56 3
|
[7] |
Radtke J, Kebschull C and Stoll E 2017 Acta Astronaut. 131 55
|
[8] |
Foust J 2019 IEEE Spectr. 56 50
|
[9] |
Mazouffre S and Grimaud L 2018 IEEE Trans. Plasma Sci.46 330
|
[10] |
Conversano R W et al 2019 Plasma Sources Sci. Technol. 28 105011
|
[11] |
Szabo J J et al 2017 Characterization of a one hundred Watt,long lifetime Hall effect thruster for small spacecraft Proc.53rd AIAA/SAE/ASEE Joint Propulsion Conf. (Atlanta)(AIAA) (https://doi.org/10.2514/6.2017-4728)
|
[12] |
Ducci C et al 2013 HT100D performance evaluation and endurance test results Proc. 33rd Int. Electric PropulsionConf. (Washington) (The George Washington University)
|
[13] |
Lee D et al 2019 Development and performance test of a 50 W-class hall thruster Proc. 36th Int. Electric PropulsionConf. (Vienna) (The University of Vienna)
|
[14] |
Watanabe H, Cho S and Kubota K 2019 Performance evaluation of a 100-W class hall thruster Proc. 36th Int.Electric Propulsion Conf. (Vienna) (The University of Vienna)
|
[15] |
Brown D L and Gallimore A D 2009 Evaluation of plume divergence and facility effects on far-field faraday probe current density profiles Proc. 31st Int. Electric Propulsion Conf. (Michigan) (The University of Michigan)
|
[16] |
Mazouffre S et al 2017 Evaluation of various probe designs for measuring the ion current density in a Hall thruster plume Proc. 35th Int. Electric Propulsion Conf. (Michigan) (Georgia Institute of Technology) (https://semanticscholar.org/paper/Evaluation-of-various-probe-designs-formeasuring-a-Mazouffre-Largeau/d49c48ddc6b85c3d06d4eb3cd35a4917d3851eb7)
|
[17] |
Cusson S E, Dale E T and Gallimore A D 2017 J. Propul.Power 33 1037
|
[18] |
Zhang Z et al 2016 Rev. Sci. Instrum. 87 113502
|
[19] |
Lobbia R B and Beal B E 2017 J. Propul. Power 33 566
|
[20] |
Cao S et al 2020 Acta Astronaut. 170 509
|
[21] |
Hofer R R, Jankovsky R S and Gallimore A D 2006 J. Propul.Power 22 721
|
[22] |
Chen T et al 2020 Plasma Sci. Technol. 22 094005
|
[23] |
Hallouin T and Mazouffre S 2020 Aerospace 7 58
|
[24] |
Brown D L et al 2017 J. Propul. Power 33 582
|
[25] |
Fan H T et al 2020 Adv. Space Res. 66 2024
|
[26] |
Ding Y J et al 2017 Phys. Lett. A 381 3482
|
[27] |
Borthakur S et al 2018 Phys. Plasmas 25 013532
|
[28] |
Diamant K D, Liang R and Corey R L 2014 The effect of background pressure on SPT-100 Hall thruster performance Proc. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conf.(Cleveland) (AIAA) (https://doi.org/10.2514/6.2014-3710)
|
[29] |
Diamant K D et al 2016 Performance and plume characterization of the PPS 1350-G hall thruster Proc. 52nd AIAA/SAE/ASEE Joint Propulsion Conf. (Salt Lake City) (AIAA) (https://doi.org/10.2514/6.2016-4543)
|
[30] |
Nakles M R et al 2009 A plume comparison of xenon and krypton propellant on a 600 W hall thruster Proc. 31st Int.Electric Propulsion Conf. (Michigan) (The University of Michigan)
|
[31] |
Reid B et al 2008 Angularly-resolved ExB probe spectra in the plume of a 6-kW hall thruster Proc. 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford) (AIAA)(https://doi.org/10.2514/6.2008-5287)
|
[32] |
Dannenmayer K and Mazouffre S 2009 Elementary scaling laws for sizing up and down hall effect thrusters: impact of simplifying assumptions Proc. 31st Int. Electric Propulsion Conf. (Michigan) (The University of Michigan)
|
[33] |
Mazouffre S, Kulaev V and Luna J P 2009 Plasma Sources Sci.Technol. 18 034022
|
[1] | Xinwei CHEN, Jun GAO, Sanxiang YANG, Hai GENG, Ning GUO, Zuo GU, Juntai YANG, Hong ZHANG. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters[J]. Plasma Science and Technology, 2023, 25(1): 015504. DOI: 10.1088/2058-6272/ac7d42 |
[2] | Hong LI (李鸿), Xingyu LIU (刘星宇), Zhiyong GAO (高志勇), Yongjie DING (丁永杰), Liqiu WEI (魏立秋), Daren YU (于达仁), Xiaogang WANG (王晓钢). Particle-in-cell simulation for effect of anode temperature on discharge characteristics of a Hall effect thruster[J]. Plasma Science and Technology, 2018, 20(12): 125504. DOI: 10.1088/2058-6272/aaddf2 |
[3] | Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5 |
[4] | Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52 |
[5] | Yongjie DING (丁永杰), Hong LI (李鸿), Boyang JIA (贾伯阳), PengLI (李朋), Liqiu WEI (魏立秋), YuXU (徐宇), Wuji PENG (彭武吉), Hezhi SUN (孙鹤芝), Yong CAO (曹勇), Daren YU (于达仁). Simulation of the effect of a magnetically insulated anode on a low-power cylindrical Hall thruster[J]. Plasma Science and Technology, 2018, 20(3): 35509-035509. DOI: 10.1088/2058-6272/aa9fe7 |
[6] | Qingsong HE (何青松), Haixing WANG (王海兴). Nonequilibrium modeling study on plasma flow features in a low-power nitrogen/hydrogen arcjet thruster[J]. Plasma Science and Technology, 2017, 19(5): 55502-055502. DOI: 10.1088/2058-6272/aa5f12 |
[7] | DUAN Jianjin (段剑金), HU Jue (胡觉), ZHANG Chao (张超), WEN Yuanbin (温元斌), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). Plasma Discharge Process in a Pulsed Diaphragm Discharge System[J]. Plasma Science and Technology, 2014, 16(12): 1106-1110. DOI: 10.1088/1009-0630/16/12/05 |
[8] | FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14 |
[9] | ZHU Zhe (朱哲), ZHU Yinfeng (朱银锋), HUANG Ronglin (黄荣林), FU Peng (傅鹏), DING Yixiao(丁逸骁). Study on the Current-sharing Control System of the TF Power Supply for a Superconducting Tokamak[J]. Plasma Science and Technology, 2012, 14(10): 941-946. DOI: 10.1088/1009-0630/14/10/16 |
[10] | DUAN Ping(段萍), LI Xi (李肸), SHEN Hongjuan (沈鸿娟), CHEN Long (陈龙), E Peng (鄂鹏). Characteristics of a Sheath with Secondary Electron Emission in the Double Walls of a Hall Thruster[J]. Plasma Science and Technology, 2012, 14(9): 837-841. DOI: 10.1088/1009-0630/14/9/12 |
1. | Zhao, H., Dai, H., Yue, X. et al. Manipulating Tumbling Spacecraft by Hall Thruster. IEEE Transactions on Aerospace and Electronic Systems, 2025. DOI:10.1109/TAES.2025.3528916 | |
2. | Li, J., Wei, L., Hu, Y. et al. Perturbation indicator for Hall effect thruster operating state based on statistical characteristics of breathing oscillation time scale signals. Advances in Space Research, 2023, 72(9): 3595-3605. DOI:10.1016/j.asr.2023.07.001 | |
3. | Tang, X., Lin, Z., Zhou, Z. et al. Analysis and Experimental Validation of an Integrated Current-Source Power Supply With High Power Factor for DBD Applications. IEEE Transactions on Plasma Science, 2023, 51(5): 1290-1301. DOI:10.1109/TPS.2023.3263052 | |
4. | Chen, X., Zhao, Y., Tian, K. et al. Study of beam divergence and thrust vector eccentricity characteristics of the Hall thruster based on dual Faraday probe array planes and its applications. Plasma Science and Technology, 2023, 25(5): 055501. DOI:10.1088/2058-6272/aca94e | |
5. | Luo, W., Long, J., Xu, L. et al. Research progress of distribution and detection technology neutral gas in Hall thruster discharge channel | [霍尔推力器放电通道中性气体分布及检测技术研究进展]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2023, 46(1): 158-166. DOI:10.7673/j.issn.1006-2793.2023.01.019 | |
6. | Zeng, D., Li, H., Liu, J. et al. Numerical study of the effect of aft-loaded magnetic field on multiple ionizations in Hall thruster. Plasma Science and Technology, 2022, 24(7): 074005. DOI:10.1088/2058-6272/ac5788 | |
7. | Chen, X., Gao, J., Yang, S. et al. Experimental and numerical simulation study of the effect for the anode positions on the discharge characteristics of 300 W class low power Hall thrusters. Plasma Science and Technology, 2022, 25(1): 015504. DOI:10.1088/2058-6272/ac7d42 | |
8. | Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7 |