Advanced Search+
Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
Citation: Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3

Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters

Funds: This work was partly supported by the Shanghai Engineering Research Center of Space Engine (No. 17DZ2280800).
More Information
  • Received Date: March 17, 2021
  • Revised Date: August 01, 2021
  • Accepted Date: August 03, 2021
  • In this work, a force measurement system is proposed to measure the thrust of plasma microthruster with thrust magnitude ranging from sub-micro-Newtons to hundreds micro-Newtons. The thrust measurement system uses an elastic torsional pendulum structure with a capacitance sensor to measure the displacement, which can reflect the position change caused by the applied force perpendicular to the pendulum axis. In the open-loop mode, the steady-state thrust or the impulse of the plasma micro-thruster can be obtained from the swing of the pendulum, and in the closed-loop mode the steady-state thrust can be obtained from the feedback force that keeps the pendulum at a specific position. The thrust respond of the system was calibrated using an electrostatic weak force generation device. Experimental results show that the system can measure a thrust range from 0 to 200 μN in both open-loop mode and closed-loop mode with a thrust resolution of 0.1 μN, and the system can response to a pulse bit at the magnitude of 0.1 mN s generated by a micro cathode arc thruster. The background noise of the closed-loop mode is lower than that of the open-loop mode, both less than 0.1 mN Hz / in the range of 10 mHz to 5 Hz.
  • [1]
    Goebel D et al 2002 In 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit p 4348
    [2]
    Goebel D M and Katz I 2008 Fundamentals of Electric Propulsion: Ion and Hall Thrusters vol 1 (New York: Wiley)
    [3]
    Mueller J et al 2010 Survey of Propulsion Technologies Applicable to CubeSats Technical Report NASA Jet Propulsion Laboratory (http://hdl.handle.net/2014/41627)
    [4]
    Zhang G C et al 2020 Chin. J. Aeronaut. 33 3018
    [5]
    Cao S et al 2020 Acta Astronaut. 170 509
    [6]
    Tsay M et al 2016 52nd AIAA/SAE/ASEE Joint Propulsion Conf. p 4544
    [7]
    Spence D et al 2013 In AIAA SPACE 2013 Conf. and Exposition p 5329
    [8]
    Zhuang T et al 2014 J. Propul. Power 30 29
    [9]
    Lukas J et al 2016 AIP Adv. 6 025311
    [10]
    Zhang Z et al 2018 Plasma Sources Sci. Technol. 27 015004
    [11]
    Zhang Z et al 2020 Plasma Sources Sci. Technol. 29 045006
    [12]
    Haag T W 1997 Rev. Sci. Instrum. 68 2060
    [13]
    Jamison A et al 2002 Rev. Sci. Instrum. 73 3629
    [14]
    Gamero C M 2003 Rev. Sci. Instrum. 74 4509
    [15]
    Ziemer J and Microthrust M S 2004 40th AIAA/ASME/SAE/ ASEE Joint Propulsion Conf. and Exhibit p 3439
    [16]
    Maghami P G et al 2005 Class. Quantum Gravity 22 S421
    [17]
    Koizumi H et al 2004 Rev. Sci. Instrum. 75 3185
    [18]
    Polzin K A et al 2006 Rev. Sci. Instrum. 77 105108
    [19]
    Tang H B et al 2011 Rev. Sci. Instrum. 82 035118
    [20]
    Tang H B et al 2012 Micro-thrust full elasticity measurement device J. Propulsion Technol. 28 703–6 (in Chinese) (https://en.cnki.com.cn/Article_en/CJFDTotalTJJS200706024.htm)
    [21]
    Boccaletto L and Agostino L 2011 36th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. and Exhibit p 3268
    [22]
    Yang Y X et al 2012 Rev. Sci. Instrum. 83 015105
    [23]
    Zhou W J et al 2013 Rev. Sci. Instrum. 84 125115
    [24]
    Soni J and Roy S 2013 Rev. Sci. Instrum. 84 095103
    [25]
    Chakraborty S et al 2015 Rev. Sci. Instrum. 86 115109
    [26]
    Anselmo M R and Marques R 2019 Meas. Sci. Technol. 30 055903
    [27]
    Den Hartog J P 1985 Mechanical vibrations Courier Corporation (New York: Dover)
    [28]
    Ciaralli S et al 2013 Meas. Sci. Technol. 24 115003
    [29]
    Tang H B et al 2011 J. Propul. Power, 27 218
    [30]
    Tang H B et al 2011 Aerosp. Sci. Technol. 15 577
    [31]
    Kolbeck J et al 2017 Proc. 35th Int. Electric Propulsion Conf.(Georgia, USA) (http://electricrocket.org/IEPC/IEPC_2017_405.pdf)
    [32]
    Yan A et al 2009 47th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition p 212
    [33]
    Hinkelmann K and Kempthorne O 2007 Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design (New York: Wiley)
    [34]
    Chen J et al 2004 Remote Sens. Environ. 91 332
    [35]
    Gasior M and Gonzalez J L 2004 AIP Conf. Proc. 732 276
  • Related Articles

    [1]Zongqi XU, Pingyang WANG, Dongsheng CAI, Rui TAN, Wenjing JIANG. Performance investigation of a low-power Hall thruster fed on iodine propellant[J]. Plasma Science and Technology, 2024, 26(6): 065501. DOI: 10.1088/2058-6272/ad240e
    [2]Fawzi DERKAOUI, Zhaoxin LIU (刘朝鑫), Wenjiang YANG (杨文将), Yu QIN (秦瑀), Kunlong WU (吴坤隆), Peng ZHAO (赵鹏), Juzhuang YAN (闫炬壮), Junxue REN (任军学), Haibin TANG (汤海滨). Design and research of magnetically levitated testbed with composite superconductor bearing for micro thrust measurement[J]. Plasma Science and Technology, 2021, 23(10): 104010. DOI: 10.1088/2058-6272/ac1eec
    [3]Hongbei WANG (王宏北), Xiaoqian CUI (崔晓倩), Yuanbo LI (李元博), Mengge ZHAO (赵梦鸽), Shuhua LI (李树华), Guangnan LUO (罗广南), Hongbin DING (丁洪斌). Measurement of the surface morphology of plasma facing components on the EAST tokamak by a laser speckle interferometry approach[J]. Plasma Science and Technology, 2018, 20(3): 35602-035602. DOI: 10.1088/2058-6272/aa9fe6
    [4]Chen YUAN (袁晨), Jun WU (吴军), Zejie YIN (阴泽杰). A digital wide range neutron flux measuring system for HL-2A[J]. Plasma Science and Technology, 2017, 19(8): 84004-084004. DOI: 10.1088/2058-6272/aa6bf1
    [5]DU Tengfei (杜腾飞), PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), HU Zhimeng (胡志猛), GE Lijian (葛理健), HU Liqun (胡立群), ZHONG Guoqiang (钟国强), PU Neng (普能), CHEN Jinxiang (陈金象), FAN Tieshuan (樊铁栓). Time Dependent DD Neutrons Measurement Using a Single Crystal Chemical Vapor Deposition Diamond Detector on EAST[J]. Plasma Science and Technology, 2016, 18(9): 950-953. DOI: 10.1088/1009-0630/18/9/12
    [6]ZHU Tuo (朱托), SHANG Wanli (尚万里), ZHANG Wenhai (张文海), YANG Jiamin (杨家敏), et al.. Quantitative Measurement of the Proportions of High-Order Harmonics for the 4B7B Soft-X-Ray Source at Beijing Synchrotron Radiation Facility[J]. Plasma Science and Technology, 2013, 15(12): 1194-1196. DOI: 10.1088/1009-0630/15/12/06
    [7]Takashi MINAMI, Shohei ARAI, Naoki KENMOCH, Hiroaki YASHIRO, Chihiro TAKAHASHI, Shinji KOBAYASHI, Tohru MIZUUCHI, Shinsuke OHSHIMA, Satoshi YAMAMOTO, Hiroyuki OKADA, Kazunobu NAGASAKI, et al. Present Status of the Nd:YAG Thomson Scattering System Development for Time Evolution Measurement of Plasma Profile on Heliotron J[J]. Plasma Science and Technology, 2013, 15(3): 240-243. DOI: 10.1088/1009-0630/15/3/10
    [8]K. KOZUE, G. KUMAKAWA, S. NAMBA, T. ENDO, K. TAKIYAMA, K. SATO, N. TAMURA. Spectroscopic Measurement of Shock Waves in an Arcjet Plasma Expanding Through a Conical Nozzle[J]. Plasma Science and Technology, 2013, 15(2): 89-92. DOI: 10.1088/1009-0630/15/2/01
    [9]WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09
    [10]ZHOU Mulin (周木林), LIU Feng (刘峰), LI Chun (李春), DU Fei (杜飞), LI Yutong (李玉同), WANG Weimin(王伟民), SHENG Zhengming (盛政明), CHEN Limin (陈黎明), MA Jinlong (马景龙), LU Xin (鲁欣), DONG Quanli (董全力), ZHANG Jie(张杰). Single-Shot Broad Bandwidth Terahertz Pulse Measurement[J]. Plasma Science and Technology, 2012, 14(1): 20-23. DOI: 10.1088/1009-0630/14/1/05
  • Cited by

    Periodical cited type(22)

    1. Liang, S., Xu, L., Lu, S. et al. Development of a micro-thrust measurement system and ground thrust measurement of the micro Hall thruster for Taiji mission. Acta Astronautica, 2025. DOI:10.1016/j.actaastro.2025.01.047
    2. Tu, H., Cui, Q., Sun, H. et al. An integrated weak thrust stand based on vertical pendulum and its Performance characteristics | [集成化的竖直摆式微推力测试台及其性能]. Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology, 2024, 44(6): 154-163. DOI:10.16708/j.cnki.1000-758X.2024.0100
    3. Zhang, G., Ren, J., Liu, Q. et al. Development of a low-power Hall thruster with permanent magnets and a dual trigger electrode hollow cathode for the Qilu satellite constellation. Aerospace Science and Technology, 2024. DOI:10.1016/j.ast.2024.109538
    4. He, Y., Feng, F., Wang, Z. et al. Research on micro-thruster test platform based on uniform magnetic field calibration | [基于均匀磁场标定的微动力测试平台研究]. Guti Huojian Jishu/Journal of Solid Rocket Technology, 2024, 47(5): 730-737. DOI:10.7673/j.issn.1006-2793.2024.05.016
    5. Tu, H., Sun, H., Liu, K. et al. Investigating the repeatability error in thrust measurement on a pendulum-based stand. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115397
    6. Long, J., Cheng, Y., Wang, J. et al. Simulation and test for the micro-newton electromagnetic calibration force measurement. Measurement: Journal of the International Measurement Confederation, 2024. DOI:10.1016/j.measurement.2024.115001
    7. Sun, B., Chang, Y., Liu, X. et al. Radial ablation uniformity of cathode and design of double anode micro-cathode arc thruster. Acta Astronautica, 2024. DOI:10.1016/j.actaastro.2024.04.044
    8. Qi, J., Zhang, Z., Zhang, Z. et al. Plasma plume enhancement of a dual-anode vacuum arc thruster with magnetic nozzle. Plasma Sources Science and Technology, 2024, 33(7): 075015. DOI:10.1088/1361-6595/ad647c
    9. Kan, W., Liu, W., Lou, W. et al. High-safety energetic micro-igniter for micro-thrust system. Sensors and Actuators A: Physical, 2024. DOI:10.1016/j.sna.2024.115056
    10. Ye, J., Wang, S., Chang, H. et al. Development of a Laser Micro-Thruster and On-Orbit Testing. Aerospace, 2024, 11(1): 23. DOI:10.3390/aerospace11010023
    11. Zhang, Z., Zhang, G., Mao, R. et al. A combined measurement method of thrust vector and roll torque for low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2023.09.011
    12. Tang, H.-B., Zhang, Z.-K., Zhang, Z. Research Progress of Micro Thrust Measurement Technology for Space Electrical Propulsion | [空间电推进微小推力测量技术]. Tuijin Jishu/Journal of Propulsion Technology, 2023, 44(6): 2301001. DOI:10.13675/j.cnki.tjjs.2301001
    13. Zhang, Z., Zhang, G., Qi, J. et al. Roll torque measurement and interpretation of low power Hall-effect thrusters. Acta Astronautica, 2023. DOI:10.1016/j.actaastro.2022.11.040
    14. Wang, S., Wang, S., Xing, B. et al. Study on the ablation performance of semiconductor lasers on different materials. Proceedings of SPIE - The International Society for Optical Engineering, 2023. DOI:10.1117/12.2665908
    15. Xu, H., Mao, Q., Gao, Y. et al. A newly designed decoupling method for micro-Newton thrust measurement. Review of Scientific Instruments, 2023, 94(1): 014504. DOI:10.1063/5.0120130
    16. Liu, Z.X., Yang, W.J., Zhao, P. et al. Loading capacity, rotation loss and torsional oscillation research on an Evershed-type hybrid superconducting bearing used for micro-thrust measurements. Superconductor Science and Technology, 2022, 35(12): 124003. DOI:10.1088/1361-6668/ac96b5
    17. Zhang, Z., Zhang, Z., Wang, Y. et al. Simultaneous experimental verification of indirect thrust measurement method based on Hall-effect thruster and plasma plume. Vacuum, 2022. DOI:10.1016/j.vacuum.2022.111384
    18. WANG, S., DU, B., DU, B. et al. Impacts of laser pulse width and target thickness on laser micro-propulsion performance. Plasma Science and Technology, 2022, 24(10): 105504. DOI:10.1088/2058-6272/ac6da8
    19. Feng, X.-H., Hong, Y.-J., Cui, H.-C. et al. Numerical Simulation and Experimental Methods for High Precision Electromagnetic Calibration Force | [高精度电磁标定力数值模拟及实验研究]. Tuijin Jishu/Journal of Propulsion Technology, 2022, 43(8): 210806. DOI:10.13675/j.cnki.tjjs.210806
    20. Mühlich, N.S., Gerger, J., Seifert, B. et al. Simultaneously measured direct and indirect thrust of a FEEP thruster using novel thrust balance and beam diagnostics. Acta Astronautica, 2022. DOI:10.1016/j.actaastro.2022.05.009
    21. Wang, S., Du, B., Xing, B. et al. Interface Adhesion Property and Laser Ablation Performance of GAP-PET Double-Layer Tape with Plasma Treatment. Nanomaterials, 2022, 12(11): 1827. DOI:10.3390/nano12111827
    22. Tang, H., Yu, D., Wang, H. et al. Special issue on selected papers from CEPC 2020. Plasma Science and Technology, 2021, 23(10): 100101. DOI:10.1088/2058-6272/ac22f7

    Other cited types(0)

Catalog

    Article views (207) PDF downloads (240) Cited by(22)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return