Advanced Search+
Weisheng CUI (崔伟胜), Qiaolu LIN (林俏露), Hongbo LI (李宏博), Shuai ZHAO (赵帅), Yunge ZHANG (张赟阁), Yifan HUANG (黄逸凡), Shuting FAN (范姝婷), Yiling SUN (孙一翎), Zhengfang QIAN (钱正芳), Renheng WANG (王任衡). Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2021, 23(11): 115403. DOI: 10.1088/2058-6272/ac1e77
Citation: Weisheng CUI (崔伟胜), Qiaolu LIN (林俏露), Hongbo LI (李宏博), Shuai ZHAO (赵帅), Yunge ZHANG (张赟阁), Yifan HUANG (黄逸凡), Shuting FAN (范姝婷), Yiling SUN (孙一翎), Zhengfang QIAN (钱正芳), Renheng WANG (王任衡). Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air[J]. Plasma Science and Technology, 2021, 23(11): 115403. DOI: 10.1088/2058-6272/ac1e77

Influence of Ti3C2Tx (MXene) on the generation of dielectric barrier discharge in air

Funds: We would like to thank the support of the Science and Technology Innovation Commission of Shenzhen (Nos. JCYJ20180507181858539 and JCYJ20190808173815205), Guangdong Basic and Applied Basic Research Foundation (No. 2019A1515012111), Shenzhen Science and Technology Program (No. KQTD20180412181422399), the National Key R&D Program of China (No. 2019YFB2204500), and National Natural Science Foundation of China (No. 51804199).
More Information
  • Received Date: May 23, 2021
  • Revised Date: August 16, 2021
  • Accepted Date: August 16, 2021
  • The formation of homogeneous dielectric barrier discharge (DBD) in air is a key scientific problem and core technical problem to be solved for the application of plasmas. Here, we report the effect of two-dimensional (2D) nanomaterial Ti3C2Tx (Tx = –F, –O and/or –OH) on regulating the electrical discharge characteristics. The field emission and weak bound state property of Ti3C2Tx can effectively increase the seed electrons and contribute to the generation of atmospheric pressure homogeneous air DBD. The electron avalanche development for the uneven electrode structure is calculated, and the discharge mode transition is modeled. The comparative analyses of discharge phenomena validate the regulation of Ti3C2Tx on the discharge characteristics of DBD. The light emission capture and the voltage and current waveforms verify that the transition of Townsend discharge to streamer discharge is effectively inhibited. The optical emission spectra are used to characterize the plasma and confirm that it is in a non-equilibrium state and the gas temperature is at room temperature. This is the first exploration of Ti3C2Tx on the regulation of electrical discharge characteristics as far as we know. This work proves the feasibility of Ti3C2Tx as a source of seed electrons to form homogeneous DBD, establishing a preliminary foundation for promoting the application of atmospheric pressure non-equilibrium plasma.
  • [1]
    Xiao D Z et al 2020 Small 16 2001470
    [2]
    Fang Z et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 2288
    [3]
    Zhang C et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 768
    [4]
    Dou S et al 2018 Adv. Mater. 30 1705850
    [5]
    Miller K K et al 2019 Combust. Flame 206 211
    [6]
    Machala Z and Graves D B 2018 Trends Biotechnol. 36 579
    [7]
    Guo L et al 2021 Chem. Eng. J. 421 127742
    [8]
    Ma M Y et al 2020 J. Phys. D: Appl. Phys. 53 185207
    [9]
    Fu Y Y et al 2020 Plasma Res. Express 2 013001
    [10]
    Wang X X and Li C R 2011 High Volt. Eng. 37 1405 (in Chinese)
    [11]
    Fang Z et al 2009 J. Phys. D: Appl. Phys. 42 085204
    [12]
    Sorokin D A et al 2019 J. Appl. Phys. 125 143301
    [13]
    Wang L et al 2017 Plasma Sources Sci. Technol. 26 075012
    [14]
    Shao T et al 2018 High Volt. 3 14
    [15]
    Qi F et al 2019 Appl. Phys. Lett. 115 194101
    [16]
    Xu Z and Xiong F F 2017 Plasma Surface Metallurgy (Beijing:Science Press)
    [17]
    Ráhel’ J and Sherman D M 2005 J. Phys. D: Appl. Phys.38 547
    [18]
    Garamoon A A and El-zeer D M 2009 Plasma Sources Sci.Technol. 18 045006
    [19]
    Fang Z et al 2007 J. Phys. D: Appl. Phys. 40 1401
    [20]
    Wang X X, Lu M Z and Pu Y K 2002 Acta Phys. Sin. 51 2778 (in Chinese)
    [21]
    Li M et al 2008 Appl. Phys. Lett. 92 031503
    [22]
    Akishev Y et al 2020 J. Phys.: Conf. Ser. 1696 012022
    [23]
    Cohick Z et al 2020 Plasma Sources Sci. Technol. 29 015019
    [24]
    Cui W S et al 2017 IEEE Trans. Plasma Sci. 45 328
    [25]
    Tarasenko V 2020 Plasma Sources Sci. Technol. 29 034001
    [26]
    Bruggeman P J et al 2016 Plasma Sources Sci. Technol. 25 053002
    [27]
    Naidis G V et al 2018 Plasma Sources Sci. Technol. 27 013001
    [28]
    Cui W S et al 2021 Plasma Sci. Technol. 23 075402
    [29]
    Golubovskii Y B et al 2002 J. Phys. D: Appl. Phys. 35 751
    [30]
    Luo H Y et al 2014 IEEE Trans. Plasma Sci. 42 1211
    [31]
    Wang X X 2009 High Volt. Eng. 35 1 (in Chinese)
    [32]
    Tan C L et al 2017 Chem. Rev. 117 6225
    [33]
    Butler S Z et al 2013 ACS Nano 7 2898
    [34]
    Naguib M et al 2011 Adv. Mater. 23 4248
    [35]
    Zhang Z et al 2019 Nat. Commun. 10 2920
    [36]
    Zhou T Z et al 2020 Nat. Commun. 11 2077
    [37]
    Ronchi R M, Arantes J T and Santos S F 2019 Ceram. Int. 45 18167
    [38]
    Hong X D, Zheng H R and Liang D 2020 Mater. Res. Express 7 115011
    [39]
    Chen J T et al 2020 Nanotechnology 31 285701
    [40]
    Wang Z W, Kim H and Alshareef H N 2018 Adv. Mater. 30 1706656
    [41]
    Agresti A et al 2019 Nat. Mater. 18 1228
    [42]
    Karlsson L H et al 2015 Nano Lett. 15 4955
    [43]
    Sang X H et al 2016 ACS Nano 10 9193
    [44]
    Halim J et al 2016 Appl. Surf. Sci. 362 406
    [45]
    Luo H Y et al 2010 J. Phys. D: Appl. Phys. 43 155201
    [46]
    Verger L et al 2019 Trends Chem. 1 656
    [47]
    Gao L F et al 2020 Chem. Mater. 32 1703
    [48]
    Boxman R L, Sanders D M and Martin P J 1995 Handbook of Vacuum Arc Science and Technology: Fundamentals and Applications (New Jersey: Noyes Publications)
    [49]
    Mesyats G A 2007 Pulsed Power (New York: Springer)
    [50]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
    [51]
    Wang S et al 2018 Plasma Sci. Technol. 20 075404
    [52]
    Xiong Q et al 2010 Phys. Plasmas 17 043506
    [53]
    Laux C O et al 2001 J. Quant. Spectrosc. Radiat. Transf.68 473
    [54]
    Rakhi R B et al 2015 Chem. Mater. 27 5314
    [55]
    Ghassemi H et al 2014 J. Mater. Chem. A 2 14339
  • Cited by

    Periodical cited type(5)

    1. Liu, Y., Zang, X., Zhao, S. et al. Degradation of toluene by DBD plasma catalytic technology with CoMn-BTC/ Ti3C2Tx composites. Applied Catalysis A: General, 2025. DOI:10.1016/j.apcata.2025.120180
    2. Cui, W., Chen, S., Duan, J. et al. Surface functional group regulation of Ti3C2Tx based on atmospheric pressure cold plasma. Contributions to Plasma Physics, 2024, 64(9): e202300103. DOI:10.1002/ctpp.202300103
    3. Yang, H., Chen, M.M., Zhang, H.T. et al. Examining homogeneity of dielectric barrier discharge using dispersion normalization and local temperature difference methods. Frontiers in Physics, 2023. DOI:10.3389/fphy.2023.1189371
    4. Wang, M., Li, P., Han, R. et al. Study on the Flow Field Characteristics of Pulse Dielectric Barrier Discharge Jet. 2023. DOI:10.1109/CIEEC58067.2023.10166270
    5. Zhang, Y., Zhu, Y., Tao, S. et al. Plasma-coupled catalysis in VOCs removal and CO2 conversion: Efficiency enhancement and synergistic mechanism. Catalysis Communications, 2022. DOI:10.1016/j.catcom.2022.106535

    Other cited types(0)

Catalog

    Article views (205) PDF downloads (237) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return