Processing math: 100%
Advanced Search+
Fawzi DERKAOUI, Zhaoxin LIU (刘朝鑫), Wenjiang YANG (杨文将), Yu QIN (秦瑀), Kunlong WU (吴坤隆), Peng ZHAO (赵鹏), Juzhuang YAN (闫炬壮), Junxue REN (任军学), Haibin TANG (汤海滨). Design and research of magnetically levitated testbed with composite superconductor bearing for micro thrust measurement[J]. Plasma Science and Technology, 2021, 23(10): 104010. DOI: 10.1088/2058-6272/ac1eec
Citation: Fawzi DERKAOUI, Zhaoxin LIU (刘朝鑫), Wenjiang YANG (杨文将), Yu QIN (秦瑀), Kunlong WU (吴坤隆), Peng ZHAO (赵鹏), Juzhuang YAN (闫炬壮), Junxue REN (任军学), Haibin TANG (汤海滨). Design and research of magnetically levitated testbed with composite superconductor bearing for micro thrust measurement[J]. Plasma Science and Technology, 2021, 23(10): 104010. DOI: 10.1088/2058-6272/ac1eec

Design and research of magnetically levitated testbed with composite superconductor bearing for micro thrust measurement

More Information
  • Received Date: March 24, 2021
  • Revised Date: August 17, 2021
  • Accepted Date: August 17, 2021
  • A high temperature superconducting (HTS) magnetically levitated testbed has been developed for the steady thrust measurement of miniature ion electrospray thruster. The structure of the testbed mainly consists of an HTS composite bearing, a magnetic shielding plate, an active electromagnetic brake and a laser displacement sensor. The steady thrust is described as a function of the equilibrium angle displacement of the floating frame. Furthermore, the mechanical behaviors of HTS composite bearing were studied via finite element simulation and experiments, which include the load capacity, levitation stiffness and background noise. The results show that the thrust testbed can keep in low noise and have a load capacity up to 4 kg. According to the ignition testing of the electrospray thruster, the thrust force of 25.2 μN was measured by the testbed, which is close to the design value of miniature ion electrospray thruster.
  • [1]
    Danzmann K 2003 Adv. Space Res. 32 1233
    [2]
    Hruby V et al 2008 ST7-DRS colloid thruster system development and performance summary 44th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Hartford, CT)(AIAA) (https://doi.org/10.2514/6.2008-4824)
    [3]
    McNamara P, Vitale S and Danzmann K 2008 Class. Quantum Grav. 25 114034
    [4]
    Hathaway G 2015 Rev. Sci. Instrum. 86 105116
    [5]
    Chakraborty S, Courtney D G and Shea H 2015 Rev. Sci.Instrum. 86 115109
    [6]
    Soni J and Roy S 2013 Rev. Sci. Instrum. 84 095103
    [7]
    Sotelo G G et al 2011 IEEE Trans. Appl. Supercond. 21 1464
    [8]
    Strasik M et al 2010 Supercond. Sci. Technol. 23 034021
    [9]
    Koshizuka N 2006 Phys. C: Supercond. Appl. 445 1103
    [10]
    Werfel F N et al 2012 Supercond. Sci. Technol. 25 014007
    [11]
    Yu Z Q et al 2014 IEEE Trans. Appl. Supercond. 24 5700405
    [12]
    Strasik M et al 2007 IEEE Trans. Appl. Supercond. 17 2133
    [13]
    Shigeo N et al 1995 IEEE Trans. Appl. Supercond. 5 643
    [14]
    Basaran S and Sivrioglu S 2017 Supercond. Sci. Technol. 30 035008
    [15]
    Yang W J et al 2019 Measur. Sci. Technol. 30 125020
    [16]
    Neunzig O et al 2019 Characterization of a rotational thrust balance for propellantless propulsion concepts utilizing magnetic levitation with superconductors 36th Int. Electric Propulsion Conf. (Vienna, Austria) (University of Vienna)
  • Related Articles

    [1]Zhian HAO, Jianfei LI, Bin XU, Jingfeng YAO, Chengxun YUAN, Ying WANG, Zhongxiang ZHOU, Xiaoou WANG. Composite wave-absorbing structure combining thin plasma and metasurface[J]. Plasma Science and Technology, 2023, 25(4): 045504. DOI: 10.1088/2058-6272/aca13e
    [2]Zhongkai ZHANG (张仲恺), Guanrong HANG (杭观荣), Jiayun QI (齐佳运), Zun ZHANG (张尊), Zhe ZHANG (章喆), Jiubin LIU (刘久镔), Wenjiang YANG (杨文将), Haibin TANG (汤海滨). Design and fabrication of a full elastic sub-micron-Newton scale thrust measurement system for plasma micro thrusters[J]. Plasma Science and Technology, 2021, 23(10): 104004. DOI: 10.1088/2058-6272/ac1ac3
    [3]Xiaoxing ZHANG (张晓星), Yuan TIAN (田远), Zhaolun CUI (崔兆仑), Ju TANG (唐炬). Plasma-assisted abatement of SF6 in a packed bed plasma reactor: understanding the effect of gas composition[J]. Plasma Science and Technology, 2020, 22(5): 55502-055502. DOI: 10.1088/2058-6272/ab65b2
    [4]Chijie ZHUANG (庄池杰), Zezhong WANG (王泽众), Rong ZENG (曾嵘), Lei LIU (刘磊), Te LI (李特), Min LI (李敏), Yingzhe CUI (崔英哲), Jinliang HE (何金良). Discharge characteristics of different lightning air terminals under composite voltages[J]. Plasma Science and Technology, 2019, 21(5): 51001-051001. DOI: 10.1088/2058-6272/aafdfa
    [5]Falun SONG (宋法伦), Fei LI (李飞), Mingdong ZHU (朱明冬), Langping WANG (王浪平), Beizhen ZHANG (张北镇), Haitao GONG (龚海涛), Yanqing GAN (甘延青), Xiao JIN (金晓). Development and experimental study of large size composite plasma immersion ion implantation device[J]. Plasma Science and Technology, 2018, 20(1): 14013-014013. DOI: 10.1088/2058-6272/aa88b0
    [6]Tianwei LAI (赖天伟), Bao FU (付豹), Shuangtao CHEN (陈双涛), Qiyong ZHANG (张启勇), Yu HOU (侯予). Numerical analysis of the static performance of an annular aerostatic gas thrust bearing applied in the cryogenic turbo-expander of the EAST subsystem[J]. Plasma Science and Technology, 2017, 19(2): 25604-025604. DOI: 10.1088/2058-6272/19/2/025604
    [7]YAN Shaojian(闫少健), TIAN Canxin(田灿鑫), HUANG Zhihong(黄志宏), YANG Bing(杨兵), FU Dejun(付德君). Structure and Mechanical Properties of CrTiAlN/TiAlN Composite Coatings Deposited by Multi-Arc Ion Plating[J]. Plasma Science and Technology, 2014, 16(10): 969-973. DOI: 10.1088/1009-0630/16/10/12
    [8]HAN Xiang (韩翔), LING Bili (凌必利), GAO Xiang (高翔), LIU Yong (刘永), TI Ang (提昂), LI Erzhong (李二众), XU Liqing (徐立清), WANG Yumin (王嵎民). Measurement of Magnetic Island Width by Multi-Channel ECE Radiometer on HT-7 Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 217-220. DOI: 10.1088/1009-0630/15/3/05
    [9]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
    [10]A. RAHMATI, H. BIDADI, K. AHMADI, F. HADIAN. Reactive DC Magnetron Sputter Deposited Titanium-Copper-Nitrogen Nano-Composite Thin Films with an Argon/Nitrogen Gas Mixture[J]. Plasma Science and Technology, 2010, 12(6): 681-687.
  • Cited by

    Periodical cited type(6)

    1. Li, Y., Pang, Z., Zheng, H. et al. Electrical Properties of CF3SO2F Insulating Gas Based on Density Functional Theory. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(1): 297-303. DOI:10.1109/TDEI.2023.3308083
    2. Li, L., Chen, J., Yi, C. et al. Mechanisms for insulation recovery during repetitive breakdowns in gas gaps. Physics of Plasmas, 2023, 30(12): 120501. DOI:10.1063/5.0166960
    3. Huang, C., Yin, Y., Liu, S. et al. Study on impact of gap difference on plasma distribution of direct current vacuum circuit breaker with double-break. AIP Advances, 2023, 13(11): 115226. DOI:10.1063/5.0175155
    4. Li, L., Wang, B., Yi, C. et al. Factors and Underlying Mechanisms That Influence the Repetitive Breakdown Characteristics of Corona-Stabilized Switches. Applied Sciences (Switzerland), 2023, 13(17): 9518. DOI:10.3390/app13179518
    5. Ma, Y., Gao, G., Xiang, Y. et al. Research on the energy consumption mechanism and characteristics of the gallium indium tin liquid metal arcing process. Plasma Science and Technology, 2023, 25(9): 095502. DOI:10.1088/2058-6272/acc234
    6. Zhao, S., Wang, W., Qi, Z. et al. Partial Discharge Measurement of GIS With Damped AC (DAC) Voltage: Case Study for the Particle on Insulator. IEEE Transactions on Power Delivery, 2023, 38(3): 1665-1673. DOI:10.1109/TPWRD.2022.3223477

    Other cited types(0)

Catalog

    Article views (161) PDF downloads (57) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return