Advanced Search+
Xinyu LIU (刘欣宇), Xiaoming KANG (康小明), Hanwen DENG (邓涵文), Yiming SUN (孙逸鸣). Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23(12): 125502. DOI: 10.1088/2058-6272/ac23bd
Citation: Xinyu LIU (刘欣宇), Xiaoming KANG (康小明), Hanwen DENG (邓涵文), Yiming SUN (孙逸鸣). Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips[J]. Plasma Science and Technology, 2021, 23(12): 125502. DOI: 10.1088/2058-6272/ac23bd

Energy properties and spatial plume profile of ionic liquid ion sources based on an array of porous metal strips

Funds: This work is supported by National Natural Science Foundation of China (No. 52075334).
More Information
  • Received Date: June 11, 2021
  • Revised Date: August 31, 2021
  • Accepted Date: September 02, 2021
  • An ionic liquid ion source (ILIS) is a kind of high brightness ion source capable of providing high-speed positive or negative ion beams. This paper presents a miniaturized ILIS based on an array of porous metal strips. The porous emitter array, integrated with seven 10 mm long strips, is fabricated using wire electrical discharge machining (WEDM) combined with electrochemical etching. The assembled ILIS is 30 mm × 30 mm × 17.5 mm in size and weighs less than 25 g. A series of experiments, including an I–V characteristic test, a retarding potential analyzer (RPA) test, and a spatial plume distribution test, have been conducted in vacuo to characterize the performance of the ILIS. Results show that the emitted current is up to about 800 μA and ion transparency is as high as 94%. Besides, RPA curves reveal that the total fragmentation rate of the emitted particles accounts for 48.8% in positive mode and 59.8% in negative mode. Further, with the increase in applied acceleration voltage, the voltage loss rises while the energy efficiency decreases. It is also found that the plume perpendicular to the strips has a higher divergence than the one parallel to the strips. A numerical simulation by COMSOL reveals that the electric field distribution between the two electrodes results in such a spatial plume profile.
  • [1]
    Chiarot P R, Sullivan P and Mrad R B 2011 J. Microelectromech. Syst. 20 1241
    [2]
    Bailey A G 1973 J. Phys. D: Appl. Phys. 6 276
    [3]
    Kidd P W 1968 J. Spacecr. Rock. 5 1034
    [4]
    Perel J et al 1969 AIAA J 7 507
    [5]
    Prince B D, Fritz B A and Chiu Y H 2012 Ionic liquids in electrospray propulsion systems Ionic Liquids: Science and Applications (Washington DC: American Chemical Society) 27
    [6]
    Romero-Sanz I et al 2003 J. Appl. Phys. 94 3599
    [7]
    Miller C E et al 2017 Characterization of EMI-(HF)2.3F using carbon xerogel electrospray thrusters The 35th Int. Electric Propulsion Conf. (Atlanta, Georgia, USA)
    [8]
    Lozano P C 2005 J. Phys. D: Appl. Phys. 39 126
    [9]
    Perez-Martinez C et al 2010 J. Vac. Sci. Technol. B 28 L25
    [10]
    Takeuchi M et al 2013 Nucl. Instrum. Methods Phys. Res. Sect.B: Beam Interact. Mater. Atoms 315 345
    [11]
    Perez-Martinez C et al 2011 Microelectron. Eng. 88 2088
    [12]
    Lozano P C et al 2015 MRS Bull. 40 842
    [13]
    Wu Z W et al 2020 Plasma Sci. Technol. 22 094014
    [14]
    Yu D et al 2009 Plasma Sci. Technol. 11 714
    [15]
    Chen T et al 2020 Plasma Sci. Technol. 22 094005
    [16]
    Scharlemann C et al 2011 Acta Astronautica 69 822
    [17]
    Bock D and Tajmar M 2018 Acta Astronautica 144 422
    [18]
    Loscertales I G and de la Mora J F 1995 J. Chem. Phys.103 5041
    [19]
    Coffman C et al 2016 Appl. Phys. Lett. 109 231602
    [20]
    Courtney D G, Dandavino S and Shea H 2016 J. Propul.Power 32 392
    [21]
    Courtney D G, Li H Q and Lozano P C 2013 J. Microelectromech. Syst. 22 471
    [22]
    Legge R S Jr and Lozano P C 2011 J. Propul. Power 27 485
    [23]
    Krejci D et al 2017 J. Spacecr. Rock. 54 447
    [24]
    Rojas-Herrera J et al 2017 J. Nanomech. Micromech. 7 04017006
    [25]
    Chen C, Chen M L and Zhou H H 2020 Plasma Sci. Technol.22 094009
    [26]
    Liu X Y et al 2019 Rev. Sci. Instrum. 90 123304
    [27]
    Yali M et al 2012 Int. J. Aerosp. Mech. Eng. 6 2539
    [28]
    Courtney D G, Li H Q and Lozano P 2012 J. Phys. D: Appl.Phys. 45 485203
    [29]
    Miller C E and Lozano P C 2020 Appl. Phys. Lett. 116 254101
    [30]
    Ma C and Ryan C 2021 J. Appl. Phys. 129 083302
    [31]
    Liu X et al 2019 Development and characterization of an ionic liquid electrospray thruster with a porous metal blade array The 36th Int. Electric Propulsion Conf. (Vienna, Austria)
    [32]
    Coles T M, Fedkiw T P and Lozano P C 2012 Investigating ion fragmentation in electrospray thruster beams The 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit (Atlanta, Georgia, USA)
    [33]
    Guerra-Garcia C, Krejci D and Lozano P 2016 J. Phys. D:Appl. Phys. 49 115503

Catalog

    Article views (95) PDF downloads (136) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return