Citation: | Saurav GAUTAM, Gabriele MORRA. Pre-breakdown to stable phase and origin of multiple current pulses in argon dielectric barrier discharge[J]. Plasma Science and Technology, 2021, 23(12): 125403. DOI: 10.1088/2058-6272/ac241f |
[1] |
Ramirez J C et al 2018 Biomed. Opt. Express 9 2168
|
[2] |
Asadian M et al 2018 Carbohydr. Polym. 201 402
|
[3] |
Guragain R P et al 2021 AIP Conf. Proc. 2319 030001
|
[4] |
Brunet P et al 2018 Langmuir 34 1865
|
[5] |
Kruszelnicki J, Lietz A M and Kushner M J 2019 J. Phys. D:Appl. Phys. 52 355207
|
[6] |
Buendia J A, Perez-Lopez E and Venkattraman A 2018 Water Res. 144 728
|
[7] |
Ma S et al 2018 Sep. Purif. Technol. 199 289
|
[8] |
Bengtson C and Bogaerts A 2020 Cells 9 2330
|
[9] |
Daeschlein G et al 2017 Clin. Plasma Med. 5–6 1
|
[10] |
Gerber I C et al 2017 Plasma Med. 7 159
|
[11] |
Vadlamani R A et al 2020 Appl. Microbiol. Biotechnol.104 2217
|
[12] |
Zhang Y H et al 2019 Plasma Sources Sci. Technol. 28 104001
|
[13] |
Wang C et al 2019 Phys. Plasmas 26 123506
|
[14] |
Zhang Y H, Ning W J and Dai D 2018 AIP Adv. 8 035008
|
[15] |
Yang D Z et al 2013 Appl. Phys. Lett. 102 194102
|
[16] |
Luo L et al 2020 IEEE Access 8 8145
|
[17] |
Luo L et al 2020 Appl. Sci. 10 1341
|
[18] |
Dai D, Zhao X F and Wang Q M 2014 EPL 107 15002
|
[19] |
Wan J et al 2019 Phys. Plasmas 26 103510
|
[20] |
Yonezawa M et al 2019 Jpn. J. Appl. Phys. 58 126003
|
[21] |
Li J et al 2019 IEEE Trans. Plasma Sci. 47 3134
|
[22] |
Kaupe J, Coenen D and Mitic S 2018 Plasma Sources Sci.Technol. 27 105003
|
[23] |
Ghimire B et al 2021 Plasma Sources Sci. Technol. 30 035009
|
[24] |
Cheng K Y et al 2018 Sci. Rep. 8 12214
|
[25] |
García-Alcantara E et al 2013 Archiv. Med. Res. 44 169
|
[26] |
Hasse S et al 2019 Appl. Sci. 9 2061
|
[27] |
Rafiei A et al 2020 Clin. Plasma Med. 19-20 100102
|
[28] |
Wenzel T et al 2020 Cancers 12 267
|
[29] |
Chiper A and Borcia G 2013 Plasma Chem. Plasma Process.33 553
|
[30] |
Stepanova O et al 2020 Jpn. J. Appl. Phys. 59 SHHC03
|
[31] |
Ning W J et al 2017 Phys. Plasmas 24 073509
|
[32] |
Wang J et al 2019 Phys. Plasmas 26 013511
|
[33] |
Zhang Y H et al 2018 AIP Adv. 8 095327
|
[34] |
Zhang Y H, Ning W J and Dai D 2019 IEEE Trans. Plasma Sci. 47 179
|
[35] |
Zhang Y et al 2019 Plasma Sources Sci. Technol. 28 075003
|
[36] |
Panousis E et al 2007 J. Phys. D: Appl. Phys. 40 4168
|
[37] |
Jiang W M et al 2013 Phys. Plasmas 20 073509
|
[38] |
Li X C et al 2018 Phys. Plasmas 25 073510
|
[39] |
Moreau E, Cazour J and Benard N 2018 J. Electrostat. 93 146
|
[40] |
Andreev V V, Kravchenko G A and Pichugin Y P 2020 IOP Conf. Ser.: Mater. Sci. Eng. 862 062086
|
[41] |
Zhang Y H, Ning W J and Dai D 2019 J. Phys. D: Appl. Phys.52 045203
|
[42] |
Wang H J et al 2020 Plasma Sci. Technol. 22 105504
|
[43] |
Lazarou C et al 2016 Plasma Sources Sci. Technol. 25 055023
|
[44] |
Lazarou C et al 2015 Plasma Sources Sci. Technol. 24 035012
|
[45] |
Guragain R P et al 2016 Int. J. Recent Res. Rev. IX 34
|
[46] |
Wojewodka M M, White C and Kontis K 2020 Sens. Actuat. A:Phys. 303 111831
|
[47] |
Liu Z J et al 2013 J. Appl. Phys. 113 233305
|
[48] |
Choi Y H, Kim J H and Hwang Y S 2006 Thin Solid Films 506–507 389
|
[49] |
Gautam S, Morra G and Venkattraman A 2021 J. Appl. Phys.129 153301
|
[50] |
Lee J Y et al 2014 Plasma Sources Sci. Technol. 23 035017
|
[51] |
Hagelaar G J M and Pitchford L C 2005 Plasma Sources Sci.Technol. 14 722
|
[52] |
Basurto E et al 2020 Phys. Rev. E 61 3053
|
[53] |
Chen F F 1974 Introduction to Plasma Physics (Berlin:Springer) (https://doi.org/10.1007/978-1-4757-0459-4)
|
[54] |
Alamatsaz A and Venkattraman A 2019 Phys. Plasmas 26 013512
|
[55] |
Baeva M et al 2018 J. Phys. D: Appl. Phys. 51 385202
|
[56] |
Bletzinger P and Ganguly B N 2003 J. Phys. D: Appl. Phys.36 1550
|
[57] |
Sato N 1980 J. Phys. D: Appl. Phys. 13 L3
|
[58] |
Morrow R and Sato N 1999 J. Phys. D: Appl. Phys. 32 L20
|
[59] |
Book D L 2005 Flux-Corrected Transport (Berlin: Springer)pp 5–27
|
[60] |
Herlihy M and Shavit N 2011 The Art of Multiprocessor Programming (San Francisco, CA: Morgan Kaufmann Publishers) (https://doi.org/10.5555/2385452)
|
[61] |
Rutjes C et al 2019 J. Geophys. Res.: Atmos. 124 7255
|
[62] |
Xiao D M 2016 Gas Discharge and Gas Insulation (Berlin:Springer) (https://doi.org/10.1007/978-3-662-48041-0)
|
[63] |
Li M et al 2008 Appl. Phys. Lett. 92 031503
|
[64] |
Xu Y G et al 2017 Phys. Plasmas 24 043507
|
[65] |
Morávek T et al 2016 Eur. Phys. J. Appl. Phys. 75 24706
|
[66] |
Xu X J 2001 Thin Solid Films 390 237
|
[1] | Qing LI, Guanghui ZHU, Baoming REN, Jiacheng YING, Zhida YANG, Xuan SUN. Experimental studies of cusp stabilization in Keda Mirror with AXisymmetricity (KMAX)[J]. Plasma Science and Technology, 2023, 25(2): 025102. DOI: 10.1088/2058-6272/ac8e45 |
[2] | Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295 |
[3] | ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11 |
[4] | PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), DU Tengfei (杜腾飞), HU Zhimeng (胡志猛), GE Lijian (葛理健), CHEN Jinxiang (陈金象), LI Xiangqing (李湘庆), FAN Tieshuan (樊铁栓). Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(1): 23-29. DOI: 10.1088/1009-0630/18/1/05 |
[5] | LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20 |
[6] | CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01 |
[7] | CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12 |
[8] | JI Xiang (戢翔), SONG Yuntao (宋云涛), WU Songtao(武松涛), WANG Zhibin(王志滨), SHEN Guang (沈光), LIU Xufeng (刘旭峰), CAO Lei (曹磊), ZHOU zibo (周自波), PENG Xuebing(彭学兵), WANG Chenghao(王成昊). Electromagnetic Modeling of the Passive Stabilization Loop at EAST[J]. Plasma Science and Technology, 2012, 14(9): 855-858. DOI: 10.1088/1009-0630/14/9/16 |
[9] | LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12 |
[10] | WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512. |
1. | Du, S., Cheng, X., Ge, G. et al. AC breakdown and decomposition products detection characteristics of eco-friendly insulating medium in gas insulated switchgear. Scientific Reports, 2024, 14(1): 19491. DOI:10.1038/s41598-024-70106-1 | |
2. | Tian, S., Li, X., Zhang, Y. et al. Partial-Discharge-Induced Decomposition and By-Products Properties of Eco-Friendly Insulating Gas HFO-1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(3): 1447-1454. DOI:10.1109/TDEI.2023.3344691 | |
3. | Lin, L., Qiang, C., Chen, Q. et al. Breakdown characteristics of HFO1234ze(E)/N2 gas mixture in non-uniform electric field under lightning impulse voltage. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 978. DOI:10.1007/s10854-024-12599-0 | |
4. | Zhang, X., Xiao, S., Zhang, B. et al. Challenges and Prospects for the Research of Environmentally Friendly Insulating Gases and Applications of Power Equipment Under Control Policies of PFAS and Fluorine Gas | [PFAS 及含氟气体管控下环保绝缘气体研究与电力装备应用展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44(1): 362-376. DOI:10.13334/j.0258-8013.pcsee.231579 | |
5. | Ye, Y., Hao, Y., Guo, M. et al. Theoretical Assessment of the Interaction Mechanism Between Hydrofluoroolefins and Metal Electrodes in the Presence of Discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2494-2502. DOI:10.1109/TDEI.2024.3394407 | |
6. | Cui, Z., Li, Y., Xiao, S. et al. Recent progresses, challenges and proposals on SF6 emission reduction approaches. Science of the Total Environment, 2024. DOI:10.1016/j.scitotenv.2023.167347 | |
7. | Zhang, B., Wang, S., Chen, L. et al. Influence of oxygen on solid carbon formation during arcing of eco-friendly SF6-alternative gases. Journal of Physics D: Applied Physics, 2023, 56(36): 365502. DOI:10.1088/1361-6463/acd64e | |
8. | Li, Y., Wang, Y., Xiao, S. et al. Partial discharge induced decomposition and by-products generation properties of HFO-1234ze(E)/CO2: a new eco-friendly gas insulating medium. Journal of Physics D: Applied Physics, 2023, 56(16): 165203. DOI:10.1088/1361-6463/acc03f | |
9. | Lin, L., Chen, Q., Wang, X. Power Frequency Breakdown Characteristics of HFO/N Gas Mixtures under an Extremely Nonuniform Electric Field. IEEE Transactions on Plasma Science, 2022, 50(10): 3725-3731. DOI:10.1109/TPS.2022.3200514 | |
10. | Tian, S., Li, X., Chen, K. et al. Effect of External Electric Fields on the Structure and Properties of HFOă1234ze(E) | [外电场对 HFOă1234ze(E)分子的结构和性质的影响]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(7): 2650-2658. DOI:10.13336/j.1003-6520.hve.20220392 | |
11. | Gan, H., Wang, F., Zhong, L. et al. Theoretical study of the discharge decomposition mechanism of environment-friendly insulation gas HFO-1234ze(E) in the presence of trace water. Journal of Physics: Conference Series, 2022, 2221(1): 012024. DOI:10.1088/1742-6596/2221/1/012024 | |
12. | Xiao, S., Han, P., Li, Y. et al. Insulation Performance and Electrical Field Sensitivity Properties of HFO-1336mzz(E)/CO2: A New Eco-friendly Gas Insulating Medium. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 1938-1948. DOI:10.1109/TDEI.2021.009720 | |
13. | Ranjan, P., Chen, L., Alabani, A. et al. Anomalous First Breakdown Behavior for HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1620-1627. DOI:10.1109/TDEI.2021.009676 | |
14. | Liu, H., Li, Q., Wang, J. et al. Inhibition Effect of Solid Products and DC Breakdown Characteristics of the HFO1234Ze(E)-N2-O2 Ternary Gas Mixture. ACS Omega, 2021, 6(36): 23281-23292. DOI:10.1021/acsomega.1c03020 | |
15. | Li, L., Han, P., Yao, Q. et al. RESEARCH ON THE POWER FREQUENCY BREAKDOWN CHARACTERISTICS OF A NEW ECO-FRIENDLY GAS INSULATING MEDIUM HFO-1336mzz(E). IET Conference Proceedings, 2021, 2021(15): 1925-1928. DOI:10.1049/icp.2022.0449 |