Advanced Search+
Song JIANG (姜松), Lifei HUANG (黄利飞), Zhonghang WU (吴忠航), Yonggang WANG (王永刚), Zi LI (李孜), Junfeng RAO (饶俊峰). Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities[J]. Plasma Science and Technology, 2021, 23(12): 125404. DOI: 10.1088/2058-6272/ac2b11
Citation: Song JIANG (姜松), Lifei HUANG (黄利飞), Zhonghang WU (吴忠航), Yonggang WANG (王永刚), Zi LI (李孜), Junfeng RAO (饶俊峰). Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities[J]. Plasma Science and Technology, 2021, 23(12): 125404. DOI: 10.1088/2058-6272/ac2b11

Research on the characteristics of atmospheric air dielectric barrier discharge under different square wave pulse polarities

Funds: This work is supported by Shanghai Sailing Program (No. 19YF1435000) and National Natural Science Foundation of China (Nos. 51707122 and 12005128).
More Information
  • Received Date: August 26, 2021
  • Revised Date: September 25, 2021
  • Accepted Date: September 27, 2021
  • Energy efficiency limits the application of atmospheric pressure dielectric barrier discharge (DBD), such as air purification, water treatment and material surface modification. This article focuses on the electrical and optical effects of the DBD under three square wave pulses polarities-positive, negative and bipolar. The result shows that under the same voltage with the quartz glass medium, the discharge efficiency of bipolar polarity pulse is the highest due to the influence of deposited charge. With the increase of air gap distance from 0.5 to 1.5 mm, average power consumed by the discharge air gap and discharge efficiency decrease obviously under alumina, and increase, and then decrease under quartz glass and polymethyl methacrylate (PMMA). Through spectrum diagnosis, in the quartz glass medium, the vibration temperature is the highest under negative polarity pulse excitation. Under bipolar pulse, the vibration temperature does not change significantly with the change of air gap distance. For the three dielectric materials of quartz glass, alumina and PMMA, the molecular vibration temperature is the highest under the quartz glass medium with the same voltage. When the gap spacing, pulse polarity or dielectric material are changed, the rotational temperature does not change significantly.
  • [1]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1
    [2]
    Yang W X et al 2020 J. Mater. Chem. C 8 16949
    [3]
    Khadir N, Khodja K and Belasri A 2017 Plasma Sci. Technol.19 095502
    [4]
    Tang S F et al 2018 Plasma Sci. Technol. 20 054013
    [5]
    Berger M B et al 2021 Dent. Mater. 37 690
    [6]
    Liu Z W et al 2021 Food Chem. 340 128198
    [7]
    Ekanayake U G M et al 2021 Desalination 500 114903
    [8]
    Komuro A, Matsuyuki S and Ando A 2018 Plasma Sources Sci. Technol. 27 105001
    [9]
    Han J Y et al 2020 J. Phys. D: Appl. Phys. 53 204003
    [10]
    Post P et al 2018 J. Aerosol Sci. 126 33
    [11]
    Jiang H et al 2021 J. Phys. D: Appl. Phys. 54 265203
    [12]
    Liu F et al 2020 Plasma Res. Express 2 034001
    [13]
    Kettlitz M et al 2013 Plasma Sources Sci. Technol. 22 025003
    [14]
    Williamson J M et al 2006 J. Phys. D: Appl. Phys. 39 4400
    [15]
    Yang D Z et al 2013 Appl. Phys. Lett. 102 194102
    [16]
    Nakano A and Nishida H 2019 J. Appl. Phys. 126 173303
    [17]
    Wang Q et al 2018 Plasma Sci. Technol. 20 035404
    [18]
    Yang L L et al 2017 High Voltage Eng. 43 1910 (in Chinese)
    [19]
    Pechereau F and Bourdon A 2014 J. Phys. D: Appl. Phys. 47 445206
    [20]
    Yuan D K et al 2018 Ozone: Sci. Eng. 40 494
    [21]
    Yonemori S and Ono R 2015 Biointerphases 10 029514
    [22]
    Jani M A et al 1999 J. Phys. D: Appl. Phys. 32 2560
    [23]
    Zhang L et al 2014 J. Appl. Phys. 116 113301
    [24]
    Shao T et al 2008 J. Phys. D: Appl. Phys. 41 215203
    [25]
    Liu S H and Neiger M 2001 J. Phys. D: Appl. Phys. 34 1632
    [26]
    Laux C O et al 2003 Plasma Sources Sci. Technol. 12 125
  • Related Articles

    [1]Hua LI, Minglei LI, Hongcheng ZHU, Yuhan ZHANG, Xiaoxia DU, Zhencheng CHEN, Wenxiang XIAO, Kun LIU. Realizing high efficiency and large-area sterilization by a rotating plasma jet device[J]. Plasma Science and Technology, 2022, 24(4): 045501. DOI: 10.1088/2058-6272/ac550d
    [2]Yemin ZHAN (詹烨旻), Bin GUO (郭斌). Negative refraction in a rotational plasma metamaterial[J]. Plasma Science and Technology, 2019, 21(1): 15002-015002. DOI: 10.1088/2058-6272/aae7da
    [3]Siyuan DONG (董思远), Shaomeng GUO (郭少孟), Dan WEN (文旦), Xiaoliang TANG (唐晓亮), Gao QIU (邱高). Investigation on the mode of AC discharge in H2O affected by temperature[J]. Plasma Science and Technology, 2018, 20(4): 45401-045401. DOI: 10.1088/2058-6272/aaa70b
    [4]Qian WANG (王乾), Feng LIU (刘峰), Chuanrun MIAO (苗传润), Bing YAN (严冰), Zhi FANG (方志). Investigation on discharge characteristics of a coaxial dielectric barrier discharge reactor driven by AC and ns power sources[J]. Plasma Science and Technology, 2018, 20(3): 35404-035404. DOI: 10.1088/2058-6272/aaa357
    [5]Mook Tzeng LIM (林木森), Ahmad Zulazlan SHAH ZULKIFLI, Kanesh Kumar JAYAPALAN, Oihoong CHIN. Development of a dimensionless parameter for characterization of dielectric barrier discharge devices with respect to geometrical features[J]. Plasma Science and Technology, 2017, 19(9): 95402-095402. DOI: 10.1088/2058-6272/aa7382
    [6]YAO Shuiliang (姚水良), WENG Shan (翁珊), JIN Qi (金旗), HAN Jingyi (韩竞一), JIANG Boqiong (江博琼), WU Zuliang (吴祖良). Equation of Energy Injection to a Dielectric Barrier Discharge Reactor[J]. Plasma Science and Technology, 2016, 18(8): 804-811. DOI: 10.1088/1009-0630/18/8/03
    [7]ZHANG Ying(张颖), LI Jie(李杰), LU Na(鲁娜), SHANG Kefeng(商克峰), WU Yan(吴彦). Diagnosis of Electronic Excitation Temperature in Surface Dielectric Barrier Discharge Plasmas at Atmospheric Pressure[J]. Plasma Science and Technology, 2014, 16(2): 123-127. DOI: 10.1088/1009-0630/16/2/07
    [8]LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08
    [9]WU Jing (吴静), YAO Lieming (姚列明), ZHU Jianhua(朱建华), HAN Xiaoyu (韩晓玉), LI Wenzhu(李文柱). Profile Measurement of Ion Temperature and Toroidal Rotation Velocity with Charge Exchange Recombination Spectroscopy Diagnostics in the HL-2A Tokamak[J]. Plasma Science and Technology, 2012, 14(11): 953-957. DOI: 10.1088/1009-0630/14/11/02
    [10]HU Hui (胡辉), CHEN Weipeng(陈卫鹏), Zhang Jin-li (张锦丽), LU Xi (陆僖), HE Junjia(何俊佳). Influence of plasma temperature on the concentration of NO produced by pulsed arc discharge[J]. Plasma Science and Technology, 2012, 14(3): 257-262. DOI: 10.1088/1009-0630/14/3/13

Catalog

    Article views (110) PDF downloads (99) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return