Advanced Search+
Xueren HONG (洪学仁), Desheng ZHANG (张德生), Jiming GAO (高吉明), Rongan TANG (唐荣安), Peng GUO (郭鹏), Jukui XUE (薛具奎). The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel[J]. Plasma Science and Technology, 2021, 23(12): 125002. DOI: 10.1088/2058-6272/ac2ecf
Citation: Xueren HONG (洪学仁), Desheng ZHANG (张德生), Jiming GAO (高吉明), Rongan TANG (唐荣安), Peng GUO (郭鹏), Jukui XUE (薛具奎). The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel[J]. Plasma Science and Technology, 2021, 23(12): 125002. DOI: 10.1088/2058-6272/ac2ecf

The propagation dynamics and stability of an intense laser beam in a radial power-law plasma channel

Funds: This work is supported by National Natural Science Foundation of China (Nos. 11 765 017, 11 865 014, 12 047 574, 11 847 304, 11 764 039 and 12 165 018), and by the Scientific Research Project of Gansu Higher Education (No. 2019B-034).
More Information
  • Received Date: June 01, 2021
  • Revised Date: September 30, 2021
  • Accepted Date: October 10, 2021
  • By containing ponderomotive self-channeling, the propagation behavior of an intense laser beam and the physical conditions are obtained theoretically in a radial power-law plasma channel. It is found that ponderomotive self-channeling results in the emergence of a solitary wave and catastrophic focusing, which apparently decreases the region for stable propagation in a parameter space of laser power and the ratio of the initial laser spot radius to the channel radius (RLC). Direct numerical simulation confirms the theory of constant propagation, periodic defocusing and focusing oscillations in the parameter space, and reveals a radial instability which prevents the formation of bright and dark solitary waves. The corresponding unstable critical curve is added in the parameter space numerically and the induced unstable region above the unstable critical curve covers that of catastrophic focusing, which shrinks the stable region for laser beams. For the expected constant propagation, the results reveal the need for a low RLC. Further study illustrates that the channel power-law exponent has an obvious effect on the final stable region and laser propagation, for example increasing this exponent can enlarge the stable region significantly, which is beneficial for guiding of the laser and increases the lowest RLC for constant propagation. Our results also show that the initial laser amplitude has an apparent influence on the propagation behavior.
  • [1]
    Wani M A and Kant N 2016 Optik 127 6710
    [2]
    Thakur V and Kant N 2018 Optik 172 191
    [3]
    Tajima T and Dawson J M 1979 Phys. Rev. Lett. 43 267
    [4]
    Geddes C G R et al 2004 Nature 431 538
    [5]
    Leemans W P et al 2006 Nat. Phys. 2 696
    [6]
    Lu W et al 2007 Phys. Rev. Accel. Beams 10 061301
    [7]
    Esarey E, Schroeder C B and Leemans W P 2009 Rev. Mod.Phys. 81 1229
    [8]
    Hong X R et al 2010 Phys. Plasmas 17 103107
    [9]
    Migliorati M et al 2013 Phys. Rev. Accel. Beams 16 011302
    [10]
    Lv C et al 2019 Phys. Plasmas 26 103101
    [11]
    Milchberg H M, Durfee C G III and McIlrath T J 1995 Phys.Rev. Lett. 75 2494
    [12]
    Yu W et al 1998 Phys. Rev. E 57 R2531
    [13]
    Eder D C et al 1994 Phys. Plasmas 1 1744
    [14]
    Benware B R et al 1998 Phys. Rev. Lett. 81 5804
    [15]
    Tabak M et al 1994 Phys. Plasmas 1 1626
    [16]
    Yoon S J et al 2012 Phys. Rev. Accel. Beams 15 081305
    [17]
    Hong X R et al 2020 Phys. Plasmas 27 043109
    [18]
    Durfee C G III and Milchberg H M 1993 Phys. Rev. Lett. 71 2409
    [19]
    Antonsen T M Jr and Mora P 1995 Phys. Rev. Lett. 74 4440
    [20]
    Chiou T C et al 1995 Phys. Plasmas 2 310
    [21]
    Fuchs J et al 2010 Phys. Rev. Lett. 105 225001
    [22]
    Chiou T C et al 1997 AIP Conf. Proc. 398 357
    [23]
    Chiou T C, Katsouleas T and Mori W B 1996 Phys. Plasmas 3 1700
    [24]
    Volfbeyn P et al 1997 Phys. Plasmas 4 3403
    [25]
    Sharma B S et al 2014 Phys. Plasmas 21 023108
    [26]
    Sharma A and Kourakis I 2010 Laser Part. Beams 28 479
    [27]
    Singh A and Gupta N 2015 Phys. Plasmas 22 013102
    [28]
    Wang L et al 2017 Phys. Lett. A 381 2065
    [29]
    Hong X R et al 2017 Chin. Phys. B 26 065203
    [30]
    Iwata N and Kishimoto Y 2014 Phys. Rev. Lett. 112 035002
    [31]
    Sati P, Sharma A and Tripathi V K 2012 Phys. Plasmas 19 092117
    [32]
    Aggarwal M, Vij S and Kant N 2015 Optik 126 5710
    [33]
    Sarkisov G S et al 1999 Phys. Rev. E 59 7042
    [34]
    Mizuta Y et al 2012 Phys. Rev. Accel. Beams 15 121301
    [35]
    Geddes C G R et al 2005 Phys. Rev. Lett. 95 145002
    [36]
    Benedetti C et al 2012 Phys. Plasmas 19 053101
    [37]
    Tian J M et al 2016 Phys. Plasmas 23 123117
    [38]
    Tang R A et al 2016 Phys. Lett. A 380 1037
    [39]
    Zhang S et al 2011 Phys. Plasmas 18 033104
    [40]
    Liu M W et al 2004 Phys. Lett. A 333 478
    [41]
    Liu M W et al 2009 Phys. Lett. A 373 363
    [42]
    Upadhyay A K et al 2008 Phys. Plasmas 15 124503
    [43]
    Jha P, Malviya A and Upadhyay A K 2010 Laser Part. Beams 28 245
    [44]
    Hong X R et al 2011 Phys. Plasmas 18 103106
    [45]
    Liu M P et al 2013 Commun. Theor. Phys. 60 222
    [46]
    Liu M P et al 2012 Commun. Theor. Phys. 58 569
    [47]
    Meng X H 2014 J. Appl. Math. Phys. 2 807
    [48]
    Feng Y H and Hou L 2020 Adv. Math. Phys 2020 5602373
    [49]
    Faisal M et al 2007 Phys. Plasmas 14 103103
    [50]
    Gill T S, Kaur R and Mahajan R 2010 Phys. Plasmas 17 093101
    [51]
    Cheng L H et al 2013 Phys. Rev. E 87 02510
  • Related Articles

    [1]Qing LI, Guanghui ZHU, Baoming REN, Jiacheng YING, Zhida YANG, Xuan SUN. Experimental studies of cusp stabilization in Keda Mirror with AXisymmetricity (KMAX)[J]. Plasma Science and Technology, 2023, 25(2): 025102. DOI: 10.1088/2058-6272/ac8e45
    [2]Yaorong YANG (杨耀荣), Yawei HOU (候雅巍), Wei CHEN (陈伟), Ping ZHU (朱平), Xianqu WANG (王先驱), Zhihui ZOU (邹志慧), Yi YU (余羿), Min XU (许敏), Minyou YE (叶民友). Investigation of ion fishbone stability on HL-2A using NIMROD[J]. Plasma Science and Technology, 2019, 21(8): 85101-085101. DOI: 10.1088/2058-6272/ab1295
    [3]ZHANG Xiujie (张秀杰), PAN Chuanjie (潘传杰), XU Zengyu (许增裕). MHD Stability Analysis and Flow Controls of Liquid Metal Free Surface Film Flows as Fusion Reactor PFCs[J]. Plasma Science and Technology, 2016, 18(12): 1204-1214. DOI: 10.1088/1009-0630/18/12/11
    [4]PENG Xingyu (彭星宇), CHEN Zhongjing (陈忠靖), DU Tengfei (杜腾飞), HU Zhimeng (胡志猛), GE Lijian (葛理健), CHEN Jinxiang (陈金象), LI Xiangqing (李湘庆), FAN Tieshuan (樊铁栓). Application of a BC501A Liquid Scintillation Detector with a Gain Stabilization System on the EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(1): 23-29. DOI: 10.1088/1009-0630/18/1/05
    [5]LI Weixin (李炜昕), YUAN Zhensheng (袁振圣), WU Wenjing (武文晶), CHEN Zhenmao (陈振茂). Numerical Analysis on the Magneto-Elastic Stability of Current -Carrying Conductors: Aiming at Applications for the Tokamak System[J]. Plasma Science and Technology, 2013, 15(2): 175-178. DOI: 10.1088/1009-0630/15/2/20
    [6]CHEN Junjie (陈均杰), LI Guoqiang (李国强), QIAN Jinping (钱金平), LIU Zixi (刘子奚). Ideal MHD Stability Prediction and Required Power for EAST Advanced Scenario[J]. Plasma Science and Technology, 2012, 14(11): 947-952. DOI: 10.1088/1009-0630/14/11/01
    [7]CHEN Shuangtao (陈双涛), ZHAO Hongli (赵红利), MA Bin (马斌), HOU Yu (侯予). Calculation of the Critical Speed and Stability Analysis of Cryogenic Turboexpanders with Different Structures[J]. Plasma Science and Technology, 2012, 14(10): 919-926. DOI: 10.1088/1009-0630/14/10/12
    [8]JI Xiang (戢翔), SONG Yuntao (宋云涛), WU Songtao(武松涛), WANG Zhibin(王志滨), SHEN Guang (沈光), LIU Xufeng (刘旭峰), CAO Lei (曹磊), ZHOU zibo (周自波), PENG Xuebing(彭学兵), WANG Chenghao(王成昊). Electromagnetic Modeling of the Passive Stabilization Loop at EAST[J]. Plasma Science and Technology, 2012, 14(9): 855-858. DOI: 10.1088/1009-0630/14/9/16
    [9]LIU bo (刘波), YANG JiJun (杨吉军), JIAO Guohua (焦国华), XU KeWei (徐可为). Improvement of Interfacial Adhesion Strength and Thermal Stability of Cu/p-SiC:H/SiOC:H Film Stack by Plasma Treatment on the Surface of Cu Film[J]. Plasma Science and Technology, 2012, 14(7): 619-623. DOI: 10.1088/1009-0630/14/7/12
    [10]WANG Xuemin, ZHUANG Ming, ZHANG Qiyong, LI Shanshan, FU Bao. Dynamic Stability Study of Static Gas Bearing for Small Cryogenic Turbo-Expander[J]. Plasma Science and Technology, 2011, 13(4): 506-512.
  • Cited by

    Periodical cited type(15)

    1. Du, S., Cheng, X., Ge, G. et al. AC breakdown and decomposition products detection characteristics of eco-friendly insulating medium in gas insulated switchgear. Scientific Reports, 2024, 14(1): 19491. DOI:10.1038/s41598-024-70106-1
    2. Tian, S., Li, X., Zhang, Y. et al. Partial-Discharge-Induced Decomposition and By-Products Properties of Eco-Friendly Insulating Gas HFO-1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(3): 1447-1454. DOI:10.1109/TDEI.2023.3344691
    3. Lin, L., Qiang, C., Chen, Q. et al. Breakdown characteristics of HFO1234ze(E)/N2 gas mixture in non-uniform electric field under lightning impulse voltage. Journal of Materials Science: Materials in Electronics, 2024, 35(14): 978. DOI:10.1007/s10854-024-12599-0
    4. Zhang, X., Xiao, S., Zhang, B. et al. Challenges and Prospects for the Research of Environmentally Friendly Insulating Gases and Applications of Power Equipment Under Control Policies of PFAS and Fluorine Gas | [PFAS 及含氟气体管控下环保绝缘气体研究与电力装备应用展望]. Zhongguo Dianji Gongcheng Xuebao/Proceedings of the Chinese Society of Electrical Engineering, 2024, 44(1): 362-376. DOI:10.13334/j.0258-8013.pcsee.231579
    5. Ye, Y., Hao, Y., Guo, M. et al. Theoretical Assessment of the Interaction Mechanism Between Hydrofluoroolefins and Metal Electrodes in the Presence of Discharge. IEEE Transactions on Dielectrics and Electrical Insulation, 2024, 31(5): 2494-2502. DOI:10.1109/TDEI.2024.3394407
    6. Cui, Z., Li, Y., Xiao, S. et al. Recent progresses, challenges and proposals on SF6 emission reduction approaches. Science of the Total Environment, 2024. DOI:10.1016/j.scitotenv.2023.167347
    7. Zhang, B., Wang, S., Chen, L. et al. Influence of oxygen on solid carbon formation during arcing of eco-friendly SF6-alternative gases. Journal of Physics D: Applied Physics, 2023, 56(36): 365502. DOI:10.1088/1361-6463/acd64e
    8. Li, Y., Wang, Y., Xiao, S. et al. Partial discharge induced decomposition and by-products generation properties of HFO-1234ze(E)/CO2: a new eco-friendly gas insulating medium. Journal of Physics D: Applied Physics, 2023, 56(16): 165203. DOI:10.1088/1361-6463/acc03f
    9. Lin, L., Chen, Q., Wang, X. Power Frequency Breakdown Characteristics of HFO/N Gas Mixtures under an Extremely Nonuniform Electric Field. IEEE Transactions on Plasma Science, 2022, 50(10): 3725-3731. DOI:10.1109/TPS.2022.3200514
    10. Tian, S., Li, X., Chen, K. et al. Effect of External Electric Fields on the Structure and Properties of HFOă1234ze(E) | [外电场对 HFOă1234ze(E)分子的结构和性质的影响]. Gaodianya Jishu/High Voltage Engineering, 2022, 48(7): 2650-2658. DOI:10.13336/j.1003-6520.hve.20220392
    11. Gan, H., Wang, F., Zhong, L. et al. Theoretical study of the discharge decomposition mechanism of environment-friendly insulation gas HFO-1234ze(E) in the presence of trace water. Journal of Physics: Conference Series, 2022, 2221(1): 012024. DOI:10.1088/1742-6596/2221/1/012024
    12. Xiao, S., Han, P., Li, Y. et al. Insulation Performance and Electrical Field Sensitivity Properties of HFO-1336mzz(E)/CO2: A New Eco-friendly Gas Insulating Medium. IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(6): 1938-1948. DOI:10.1109/TDEI.2021.009720
    13. Ranjan, P., Chen, L., Alabani, A. et al. Anomalous First Breakdown Behavior for HFO1234ze(E). IEEE Transactions on Dielectrics and Electrical Insulation, 2021, 28(5): 1620-1627. DOI:10.1109/TDEI.2021.009676
    14. Liu, H., Li, Q., Wang, J. et al. Inhibition Effect of Solid Products and DC Breakdown Characteristics of the HFO1234Ze(E)-N2-O2 Ternary Gas Mixture. ACS Omega, 2021, 6(36): 23281-23292. DOI:10.1021/acsomega.1c03020
    15. Li, L., Han, P., Yao, Q. et al. RESEARCH ON THE POWER FREQUENCY BREAKDOWN CHARACTERISTICS OF A NEW ECO-FRIENDLY GAS INSULATING MEDIUM HFO-1336mzz(E). IET Conference Proceedings, 2021, 2021(15): 1925-1928. DOI:10.1049/icp.2022.0449

    Other cited types(0)

Catalog

    Article views (178) PDF downloads (245) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return