Advanced Search+
Chen LI, Ruoyu HAN, Yi LIU, Jinlin ZHAO, Yanan WANG, Feng HE, Jiting OUYANG. Discharge and post-explosion behaviors of electrical explosion of conductors from a single wire to planar wire array[J]. Plasma Science and Technology, 2022, 24(1): 015507. DOI: 10.1088/2058-6272/ac3972
Citation: Chen LI, Ruoyu HAN, Yi LIU, Jinlin ZHAO, Yanan WANG, Feng HE, Jiting OUYANG. Discharge and post-explosion behaviors of electrical explosion of conductors from a single wire to planar wire array[J]. Plasma Science and Technology, 2022, 24(1): 015507. DOI: 10.1088/2058-6272/ac3972

Discharge and post-explosion behaviors of electrical explosion of conductors from a single wire to planar wire array

More Information
  • Corresponding author:

    Ruoyu HAN, E-mail: han.ruoyu@hotmail.com

  • Received Date: August 31, 2021
  • Revised Date: November 11, 2021
  • Accepted Date: November 12, 2021
  • Available Online: March 18, 2024
  • Published Date: December 14, 2021
  • This work deals with an experimental study of a Cu planar wire array (PWA) in air and water under the stored energy 300–1200 J. A single Cu wire is adopted as a controlled trial. Four configurations of PWA and a wire with the same mass (cross-section area) but the different specific surface areas (15–223 cm2 g-1) are exploded. The transient process is analyzed using high-speed photography in combination with the results of optical emission and discharge. Discharge characteristics revealed that PWA always has a higher electric power peak, early but higher voltage peak, as well as faster vaporization and ionization process than the single-wire case. Two to three times stronger optical emission could be obtained when replacing the single-wire with PWA, indicating a higher energy-density state is reached. Phenomenologically, in both air and water, single-wire load tends to develop a transverse stratified structure, while PWA is dominated by the uneven energy deposition among wires. Finally, the synchronism and uniformity of the PWA explosion are discussed.

  • This work was supported in part by National Natural Science Foundation of China (No. 51907007), Natural Science Foundation of Beijing (No. 3212034), State Key Laboratory of Electrical Insulation and Power Equipment (No. EIPE20204), and State Key Laboratory of Advanced Electromagnetic Engineering and Technology (No. AEET 2019KF006).

    Data availability statement

    The data that support the findings of this study are available from the corresponding author uponreasonable request.

  • [1]
    Chace W G 1964 Phys. Today 17 19 doi: 10.1063/1.3051737
    [2]
    Pereira N R 2020 Matter Radiat. Extremes 5 026402 doi: 10.1063/1.5133378
    [3]
    Han R Y et al 2020 J. Phys. D: Appl. Phys. 53 225202 doi: 10.1088/1361-6463/ab7798
    [4]
    Krasik Y E et al 2016 IEEE Trans. Plasma Sci. 44 412 doi: 10.1109/TPS.2015.2513757
    [5]
    Sanford T W et al 1996 Phys. Rev. Lett. 77 5063 doi: 10.1103/PhysRevLett.77.5063
    [6]
    Haines M G 2011 Plasma Phys. Control. Fusion 53 093001 doi: 10.1088/0741-3335/53/9/093001
    [7]
    Sasaki T et al 2006 Laser Part. Beams 24 371 doi: 10.1017/S0263034606060538
    [8]
    Sheftman D and Krasik Y E 2010 Phys. Plasmas 17 112702 doi: 10.1063/1.3497010
    [9]
    Kotov Y A 2003 J. Nanopart. Res. 5 539 doi: 10.1023/B:NANO.0000006069.45073.0b
    [10]
    Deeney et al 1998 Phys. Rev. Lett. 81 4883 doi: 10.1103/PhysRevLett.81.4883
    [11]
    Ryutov D D, Derzon M S and Matzen M K 2000 Rev. Mod. Phys. 72 167 doi: 10.1103/RevModPhys.72.167
    [12]
    Kantsyrev V L et al 2007 High Energy Dens. Phys. 3 136 doi: 10.1016/j.hedp.2007.02.009
    [13]
    Safronova A S et al 2011 High Energy Dens. Phys. 7 252 doi: 10.1016/j.hedp.2011.05.008
    [14]
    Li M et al 2015 Planar wire array Z-pinches on qiangguang-I facility IEEE Int. Conf. on Plasma Sciences (ICOPS) (Antalya: IEEE) p 1
    [15]
    Wu J et al 2018 Plasma Phys. Control. Fusion 60 075014 doi: 10.1088/1361-6587/aac4fe
    [16]
    Efimov S et al 2008 Phys. Plasmas 15 112703 doi: 10.1063/1.3023156
    [17]
    Antonov O et al 2013 Appl. Phys. Lett. 102 124104 doi: 10.1063/1.4798827
    [18]
    Yanuka D, Theocharous S and Bland S N 2019 Phys. Plasmas 26 122704 doi: 10.1063/1.5128720
    [19]
    Rososhek A et al 2020 Appl. Phys. Lett. 116 243702 doi: 10.1063/5.0011226
    [20]
    Qian D et al 2020 IEEE Trans. Plasma Sci. 48 3373 doi: 10.1109/TPS.2019.2963424
    [21]
    Efimov S et al 2009 J. Appl. Phys. 106 073308 doi: 10.1063/1.3243233
    [22]
    Li C et al 2020 Acta Phys. Sin. 69 075203 in Chinese doi: 10.7498/aps.69.20191797
    [23]
    Oreshkin V I and Baksht R B 2020 IEEE Trans. Plasma Sci. 48 1214 doi: 10.1109/TPS.2020.2985100
    [24]
    Rousskikh A G et al 2008 Phys. Plasmas 15 102706 doi: 10.1063/1.3000390
    [25]
    Sarkisov G S et al 2020 J. Appl. Phys. 128 183302 doi: 10.1063/5.0017528
    [26]
    Sarkisov G S et al 2004 J. Appl. Phys. 96 1674 doi: 10.1063/1.1767976
    [27]
    Grinenko A et al 2006 Phys. Plasmas 13 042701 doi: 10.1063/1.2188085
    [28]
    Yin G F et al 2020 J. Phys. D: Appl. Phys. 53 195502 doi: 10.1088/1361-6463/ab747d
    [29]
    Shelkovenko T A et al 2018 IEEE Trans. Plasma Sci. 46 3741 doi: 10.1109/TPS.2018.2852063
    [30]
    Teramoto Y et al 2001 IEEE Trans. Plasma Sci. 29 632 doi: 10.1109/27.940958
    [31]
    Rososhek A et al 2019 Appl. Phys. Lett. 115 074101 doi: 10.1063/1.5115134
    [32]
    Hu M and Kusse B R 2004 Phys. Plasmas 11 1145 doi: 10.1063/1.1644582
    [33]
    Tkachenko S I and Kuskova N I 1999 J. Phys. : Condens. Matter 11 2223 doi: 10.1088/0953-8984/11/10/009
    [34]
    Romanova V M et al 2018 Phys. Plasmas 25 112704 doi: 10.1063/1.5052549
    [35]
    Kunze H J 2009 Introduction to Plasma Spectroscopy (Berlin: Springer)
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(11)  /  Tables(2)

    Article views (82) PDF downloads (101) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return