Citation: | Junxiao WANG, Shuqing WANG, Lei ZHANG, Maogen SU, Duixiong SUN, Qi MIN, Weiguang MA, Wangbao YIN, Suotang JIA. Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum–magnesium alloy[J]. Plasma Science and Technology, 2022, 24(3): 035005. DOI: 10.1088/2058-6272/ac401a |
We proposed a theoretical spatio-temporal imaging method, which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model. By using the intensity formula, the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn. Through further image processing such as normalization, determination of minimum intensity, combination and color filtering, a relatively clear species distribution image in the plasma could be obtained. Using the above method, we simulated the plasma ablated from Al–Mg alloy by different laser energies under 1 atm argon, and obtained the theoretical spatio-temporal distributions of Mg Ⅰ, Mg Ⅱ, Al Ⅰ, Al Ⅱ and Ar Ⅰ species, which are almost consistent with the experimental results by differential imaging. Compared with the experimental decay time constants, the consistency is higher at low laser energy, indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.
This work is supported by National Key R&D Program of China (No. 2017YFA0304203); National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R70); National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108, 61775125, 11434007); Major Special Science and Technology Projects in Shanxi (No. 201804D131036); 111 Project (No. D18001); Fund for Shanxi '1331KSC'.
[1] |
Mulser P and Bauer D 2010 High Power Laser–Matter Interaction (Berlin:Springer)
|
[2] |
Stafe M, Marcu A and Puscas N N 2014 Pulsed Laser Ablation of Solids: Basics, Theory and Applications (Berlin:Springer)
|
[3] |
Mateo M P, Nicolas G and Yañez A 2007 Appl. Surf. Sci. 254 868 doi: 10.1016/j.apsusc.2007.08.043
|
[4] |
Yin H L et al 2016 J. Anal. At. Spectrom. 31 2384 doi: 10.1039/C6JA00323K
|
[5] |
Sheta S et al 2019 J. Anal. At. Spectrom. 34 1047 doi: 10.1039/C9JA00016J
|
[6] |
Spizzichino V and Fantoni R 2014 Spectrochim. Acta B 99 201 doi: 10.1016/j.sab.2014.07.003
|
[7] |
Kaidashev E M et al 2003 Appl. Phys. Lett. 82 3901 doi: 10.1063/1.1578694
|
[8] |
Yu S H et al 2012 J. Non-Cryst. Solids 358 3137 doi: 10.1016/j.jnoncrysol.2012.09.009
|
[9] |
Dumitru-Grivei M et al 2019 Appl. Phys. A 125 113 doi: 10.1007/s00339-019-2403-5
|
[10] |
Cappelli M A, Paul P H and Hanson R K 1990 Appl. Phys. Lett. 56 1715 doi: 10.1063/1.103124
|
[11] |
Gupta A et al 1991 Appl. Phys. Lett. 59 1302 doi: 10.1063/1.105481
|
[12] |
Geohegan D B 1993 Appl. Phys. Lett. 62 1463 doi: 10.1063/1.108659
|
[13] |
Multari R A et al 1996 Appl. Spectrosc. 50 1483 doi: 10.1366/0003702963904593
|
[14] |
Stratis D N et al 2001 Appl. Spectrosc. 55 999 doi: 10.1366/0003702011953144
|
[15] |
Bulatov V, Xu L and Schechter I 1996 Anal. Chem. 68 2966 doi: 10.1021/ac960277a
|
[16] |
Al-Wazzan R A, Hendron J M and Morrow T 1996 Appl. Surf. Sci. 96–98 170 doi: 10.1016/0169-4332(95)00474-2
|
[17] |
Al-Shboul K F et al 2011 J. Appl. Phys. 109 053302 doi: 10.1063/1.3555679
|
[18] |
Surmick D M, Dagel D J and Parigger C G 2019 Atoms 7 86 doi: 10.3390/atoms7030086
|
[19] |
Parigger C G et al 2020 Molecules
25 615 doi: 10.3390/molecules25030615
|
[20] |
Motto-Ros V et al 2012 Spectrochim. Acta B 74–75 11 doi: 10.1016/j.sab.2012.07.007
|
[21] |
Ma Q L et al 2013 Appl. Phys. Lett. 103 204101 doi: 10.1063/1.4829628
|
[22] |
Bai X S et al 2015 Spectrochim. Acta B 113 158 doi: 10.1016/j.sab.2015.09.023
|
[23] |
Zhao Y et al 2019 Spectrochim. Acta B 158 105644 doi: 10.1016/j.sab.2019.105644
|
[24] |
Bhattacharya D, Singh R K and Holloway P H 1991 J. Appl. Phys. 70 5433 doi: 10.1063/1.350201
|
[25] |
Zel'Dovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York:Academic)
|
[26] |
Oran E S and Boris J P 1987 Numerical Simulation of Reactive Flow (New York:Elsevier)
|
[27] |
Wang J X et al 2021 Plasma Sci. Technol. 23 035001 doi: 10.1088/2058-6272/abdda3
|
[28] |
Mahamud R et al 2018 Phys. Fluids 30 106104 doi: 10.1063/1.5043295
|
[29] |
Le H C et al 2000 Phys. Rev. E 62 4152 doi: 10.1103/PhysRevE.62.4152
|
[30] |
Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York:Wiley)
|
[31] |
Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305 doi: 10.1063/1.1863419
|
[32] |
Bogaerts A et al 2003 Spectrochim. Acta B 58 1867 doi: 10.1016/j.sab.2003.08.004
|
[33] |
Oumeziane A A, Liani B and Parisse J D 2014 Phys. Plasmas 21 023507 doi: 10.1063/1.4864647
|
[34] |
Gusarov A V, Gnedovets A G and Smurov I 2000 J. Appl. Phys. 88 4352 doi: 10.1063/1.1286175
|
[35] |
Ma S L, Gao H M and Wu L 2008 Appl. Opt. 47 1350 doi: 10.1364/AO.47.001350
|
[36] |
Book D L, Boris J P and Hain K 1975 J. Comput. Phys. 18 248 doi: 10.1016/0021-9991(75)90002-9
|
[37] |
Su M G et al 2017 Sci. Rep. 7 45212 doi: 10.1038/srep45212
|
[38] |
Surmick D M and Parigger C G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115701 doi: 10.1088/0953-4075/48/11/115701
|
[39] |
El Sherbini A M et al 2012 Opt. Photon. J. 2 278 doi: 10.4236/opj.2012.24034
|
[1] | Yang CAO (曹洋), Guangzhou QU (屈广周), Tengfei LI (李腾飞), Nan JIANG (姜楠), Tiecheng WANG (王铁成). Review on reactive species in water treatment using electrical discharge plasma: formation, measurement, mechanisms and mass transfer[J]. Plasma Science and Technology, 2018, 20(10): 103001. DOI: 10.1088/2058-6272/aacff4 |
[2] | Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d |
[3] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[4] | Wei ZHONG (钟伟), AoXU (徐翱), Yunlong LIU (刘云龙), Lei CHEN (陈磊). Visualization of particulates distribution from electrode erosion[J]. Plasma Science and Technology, 2018, 20(2): 25502-025502. DOI: 10.1088/2058-6272/aa9327 |
[5] | Y WANG (王宇), G ZHAO (赵高), C NIU (牛晨), Z W LIU (刘忠伟), J T OUYANG (欧阳吉庭), Q CHEN (陈强). Reversal of radial glow distribution in helicon plasma induced by reversed magnetic field[J]. Plasma Science and Technology, 2017, 19(2): 24003-024003. DOI: 10.1088/2058-6272/19/2/024003 |
[6] | JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05 |
[7] | M. L. SHAH, A. K. PULHANI, B. M. SURI, G. P. GUPTA. Time-Resolved Emission Spectroscopic Study of Laser-Induced Steel Plasmas[J]. Plasma Science and Technology, 2013, 15(6): 546-551. DOI: 10.1088/1009-0630/15/6/11 |
[8] | FANG Juan(方娟), HONG Yanji(洪延姬), LI Qian(李倩). Numerical Analysis of Interaction Between Single-Pulse Laser-Induced Plasma and Bow Shock in a Supersonic Flow[J]. Plasma Science and Technology, 2012, 14(8): 741-746. DOI: 10.1088/1009-0630/14/8/11 |
[9] | LIU Jian (刘健), CHU Yanyun (褚衍运), REN Zhongzhou (任中洲). Theoretical Study of the Nuclear Charge Distributions of Tin Isotopes[J]. Plasma Science and Technology, 2012, 14(7): 614-618. DOI: 10.1088/1009-0630/14/7/11 |
[10] | XIANG Nong, HU Yemin, OU Jing. Bohm criterion for collisionless sheaths in two-ion-species plasmas[J]. Plasma Science and Technology, 2011, 13(4): 385-391. |