Citation: | Junxiao WANG, Shuqing WANG, Lei ZHANG, Maogen SU, Duixiong SUN, Qi MIN, Weiguang MA, Wangbao YIN, Suotang JIA. Measurement and analysis of species distribution in laser-induced ablation plasma of an aluminum–magnesium alloy[J]. Plasma Science and Technology, 2022, 24(3): 035005. DOI: 10.1088/2058-6272/ac401a |
We proposed a theoretical spatio-temporal imaging method, which was based on the thermal model of laser ablation and the two-dimensional axisymmetric multi-species hydrodynamics model. By using the intensity formula, the integral intensity of spectral lines could be calculated and the corresponding images of intensity distribution could be drawn. Through further image processing such as normalization, determination of minimum intensity, combination and color filtering, a relatively clear species distribution image in the plasma could be obtained. Using the above method, we simulated the plasma ablated from Al–Mg alloy by different laser energies under 1 atm argon, and obtained the theoretical spatio-temporal distributions of Mg Ⅰ, Mg Ⅱ, Al Ⅰ, Al Ⅱ and Ar Ⅰ species, which are almost consistent with the experimental results by differential imaging. Compared with the experimental decay time constants, the consistency is higher at low laser energy, indicating that our theoretical model is more suitable for the plasma dominated by laser-supported combustion wave.
This work is supported by National Key R&D Program of China (No. 2017YFA0304203); National Energy R&D Center of Petroleum Refining Technology (RIPP, SINOPEC); Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (No. IRT_17R70); National Natural Science Foundation of China (NSFC) (Nos. 61975103, 61875108, 61775125, 11434007); Major Special Science and Technology Projects in Shanxi (No. 201804D131036); 111 Project (No. D18001); Fund for Shanxi '1331KSC'.
[1] |
Mulser P and Bauer D 2010 High Power Laser–Matter Interaction (Berlin:Springer)
|
[2] |
Stafe M, Marcu A and Puscas N N 2014 Pulsed Laser Ablation of Solids: Basics, Theory and Applications (Berlin:Springer)
|
[3] |
Mateo M P, Nicolas G and Yañez A 2007 Appl. Surf. Sci. 254 868 doi: 10.1016/j.apsusc.2007.08.043
|
[4] |
Yin H L et al 2016 J. Anal. At. Spectrom. 31 2384 doi: 10.1039/C6JA00323K
|
[5] |
Sheta S et al 2019 J. Anal. At. Spectrom. 34 1047 doi: 10.1039/C9JA00016J
|
[6] |
Spizzichino V and Fantoni R 2014 Spectrochim. Acta B 99 201 doi: 10.1016/j.sab.2014.07.003
|
[7] |
Kaidashev E M et al 2003 Appl. Phys. Lett. 82 3901 doi: 10.1063/1.1578694
|
[8] |
Yu S H et al 2012 J. Non-Cryst. Solids 358 3137 doi: 10.1016/j.jnoncrysol.2012.09.009
|
[9] |
Dumitru-Grivei M et al 2019 Appl. Phys. A 125 113 doi: 10.1007/s00339-019-2403-5
|
[10] |
Cappelli M A, Paul P H and Hanson R K 1990 Appl. Phys. Lett. 56 1715 doi: 10.1063/1.103124
|
[11] |
Gupta A et al 1991 Appl. Phys. Lett. 59 1302 doi: 10.1063/1.105481
|
[12] |
Geohegan D B 1993 Appl. Phys. Lett. 62 1463 doi: 10.1063/1.108659
|
[13] |
Multari R A et al 1996 Appl. Spectrosc. 50 1483 doi: 10.1366/0003702963904593
|
[14] |
Stratis D N et al 2001 Appl. Spectrosc. 55 999 doi: 10.1366/0003702011953144
|
[15] |
Bulatov V, Xu L and Schechter I 1996 Anal. Chem. 68 2966 doi: 10.1021/ac960277a
|
[16] |
Al-Wazzan R A, Hendron J M and Morrow T 1996 Appl. Surf. Sci. 96–98 170 doi: 10.1016/0169-4332(95)00474-2
|
[17] |
Al-Shboul K F et al 2011 J. Appl. Phys. 109 053302 doi: 10.1063/1.3555679
|
[18] |
Surmick D M, Dagel D J and Parigger C G 2019 Atoms 7 86 doi: 10.3390/atoms7030086
|
[19] |
Parigger C G et al 2020 Molecules
25 615 doi: 10.3390/molecules25030615
|
[20] |
Motto-Ros V et al 2012 Spectrochim. Acta B 74–75 11 doi: 10.1016/j.sab.2012.07.007
|
[21] |
Ma Q L et al 2013 Appl. Phys. Lett. 103 204101 doi: 10.1063/1.4829628
|
[22] |
Bai X S et al 2015 Spectrochim. Acta B 113 158 doi: 10.1016/j.sab.2015.09.023
|
[23] |
Zhao Y et al 2019 Spectrochim. Acta B 158 105644 doi: 10.1016/j.sab.2019.105644
|
[24] |
Bhattacharya D, Singh R K and Holloway P H 1991 J. Appl. Phys. 70 5433 doi: 10.1063/1.350201
|
[25] |
Zel'Dovich Y B and Raizer Y P 1966 Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (New York:Academic)
|
[26] |
Oran E S and Boris J P 1987 Numerical Simulation of Reactive Flow (New York:Elsevier)
|
[27] |
Wang J X et al 2021 Plasma Sci. Technol. 23 035001 doi: 10.1088/2058-6272/abdda3
|
[28] |
Mahamud R et al 2018 Phys. Fluids 30 106104 doi: 10.1063/1.5043295
|
[29] |
Le H C et al 2000 Phys. Rev. E 62 4152 doi: 10.1103/PhysRevE.62.4152
|
[30] |
Bird R B, Stewart W E and Lightfoot E N 1960 Transport Phenomena (New York:Wiley)
|
[31] |
Chen Z Y and Bogaerts A 2005 J. Appl. Phys. 97 063305 doi: 10.1063/1.1863419
|
[32] |
Bogaerts A et al 2003 Spectrochim. Acta B 58 1867 doi: 10.1016/j.sab.2003.08.004
|
[33] |
Oumeziane A A, Liani B and Parisse J D 2014 Phys. Plasmas 21 023507 doi: 10.1063/1.4864647
|
[34] |
Gusarov A V, Gnedovets A G and Smurov I 2000 J. Appl. Phys. 88 4352 doi: 10.1063/1.1286175
|
[35] |
Ma S L, Gao H M and Wu L 2008 Appl. Opt. 47 1350 doi: 10.1364/AO.47.001350
|
[36] |
Book D L, Boris J P and Hain K 1975 J. Comput. Phys. 18 248 doi: 10.1016/0021-9991(75)90002-9
|
[37] |
Su M G et al 2017 Sci. Rep. 7 45212 doi: 10.1038/srep45212
|
[38] |
Surmick D M and Parigger C G 2015 J. Phys. B: At. Mol. Opt. Phys. 48 115701 doi: 10.1088/0953-4075/48/11/115701
|
[39] |
El Sherbini A M et al 2012 Opt. Photon. J. 2 278 doi: 10.4236/opj.2012.24034
|
[1] | Jingyi LI (李婧祎), Wei ZHANG (张巍), Yu ZHOU (周宇), Boshi YUAN (苑博识), Jixing CAI (蔡继兴), Guangyong JIN (金光勇). The acceleration mechanism of shock wave induced by millisecond-nanosecond combined-pulse laser on silicon[J]. Plasma Science and Technology, 2021, 23(5): 55507-055507. DOI: 10.1088/2058-6272/abf729 |
[2] | Jiajia HOU (侯佳佳), Lei ZHANG (张雷), Yang ZHAO (赵洋), Zhe WANG (王哲), Yong ZHANG (张勇), Weiguang MA (马维光), Lei DONG (董磊), Wangbao YIN (尹王保), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Mechanisms and efficient elimination approaches of self-absorption in LIBS[J]. Plasma Science and Technology, 2019, 21(3): 34016-034016. DOI: 10.1088/2058-6272/aaf875 |
[3] | Kerong HE (何科荣), Hui CHEN (陈辉), Sanqiu LIU (刘三秋). Effect of plasma absorption on dust lattice waves in hexagonal dust crystals[J]. Plasma Science and Technology, 2018, 20(4): 45001-045001. DOI: 10.1088/2058-6272/aaaadb |
[4] | Bowen LI (李博文), Zhibin WANG (王志斌), Qiuyue NIE (聂秋月), Xiaogang WANG (王晓钢), Fanrong KONG (孔繁荣), Zhenyu WANG (王振宇). Collision effects on propagation characteristics of electromagnetic waves in a sub-wavelength plasma slab of partially ionized dense plasmas[J]. Plasma Science and Technology, 2018, 20(1): 14015-014015. DOI: 10.1088/2058-6272/aa84ab |
[5] | Mohsen AFSHARMANESH, Morteza HABIBI. Directional power absorption in helicon plasma sources excited by a half-helix antenna[J]. Plasma Science and Technology, 2017, 19(10): 105403. DOI: 10.1088/2058-6272/aa8030 |
[6] | LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), SHI Lei (石磊), LIU Donglin (刘东林). Influences of Turbulent Reentry Plasma Sheath on Wave Scattering and Propagation[J]. Plasma Science and Technology, 2016, 18(6): 617-626. DOI: 10.1088/1009-0630/18/6/07 |
[7] | LIN Min (林敏), XU Haojun (徐浩军), WEI Xiaolong (魏小龙), LIANG Hua (梁华), SONG Huimin (宋慧敏), SUN Quan (孙权), ZHANG Yanhua (张艳华). Numerical and Experimental Investigation on the Attenuation of Electromagnetic Waves in Unmagnetized Plasmas Using Inductively Coupled Plasma Actuator[J]. Plasma Science and Technology, 2015, 17(10): 847-852. DOI: 10.1088/1009-0630/17/10/07 |
[8] | SHI Jiankui(史建魁), WANG Zheng(王铮), TAO Wei(陶伟), G. A. ZHEREBTSOV, E. B. ROMANOVA, K. G. RATOVSKY. Investigation of Total Absorption of Radio Waves in High Latitude Ionosphere[J]. Plasma Science and Technology, 2014, 16(9): 833-836. DOI: 10.1088/1009-0630/16/9/05 |
[9] | XI Yanbin (奚衍斌), LIU Yue (刘悦). FDTD Simulation on Power Absorption of Terahertz Electromagnetic Waves in Dense Plasma[J]. Plasma Science and Technology, 2012, 14(1): 5-8. DOI: 10.1088/1009-0630/14/1/02 |
[10] | LI Bin, LI Hong, CHEN Zhipeng, XIE Jinlin, FENG Guangyao, LIU Wandong. Experimental and Simulational Studies on the Theoretical Model of the Plasma Absorption Probe[J]. Plasma Science and Technology, 2010, 12(5): 513-518. |