Advanced Search+
Yufa ZHOU, Jingsen ZHANG, Guangqing XIA, Yue HUA, Yanqin LI, Jixiang HU, Xiuling ZHANG, Lanbo DI. Preparation of N-doped graphite oxide for supercapacitors by NH3 cold plasma[J]. Plasma Science and Technology, 2022, 24(4): 044008. DOI: 10.1088/2058-6272/ac48e0
Citation: Yufa ZHOU, Jingsen ZHANG, Guangqing XIA, Yue HUA, Yanqin LI, Jixiang HU, Xiuling ZHANG, Lanbo DI. Preparation of N-doped graphite oxide for supercapacitors by NH3 cold plasma[J]. Plasma Science and Technology, 2022, 24(4): 044008. DOI: 10.1088/2058-6272/ac48e0

Preparation of N-doped graphite oxide for supercapacitors by NH3 cold plasma

More Information
  • Corresponding author:

    Xiuling ZHANG, E-mail: xiulz@sina.com

    Lanbo DI, E-mail: dilanbo@163.com

  • Received Date: September 12, 2021
  • Revised Date: January 03, 2022
  • Accepted Date: January 05, 2022
  • Available Online: December 15, 2023
  • Published Date: April 05, 2022
  • In this work, N-doped graphite oxide (GO-P) was prepared by cold plasma treatment of GO using a mixture of NH3 and Ar as the working gas. When the ratios of NH3: Ar were 1:2, 1:3, and 1:4, the specific capacitances of the GO-P(NH3: Ar = 1:2), GO-P(NH3: Ar = 1:3), and GO-P(NH3: Ar = 1:4) were 124.5, 187.7, and 134.6 F·g-1, respectively, which were 4.7, 7.1, and 5.1 times that of GO at the current density of 1 A·g-1. The capacitance retention of the GO-P(NH3: Ar = 1:3) was 80% when it was cycled 1000 times. The characterization results showed that the NH3 cold plasma could effectively produce N-doped GO and generate more active defects. The N/C ratio and the contents of pyridinic nitrogen and graphitic nitrogen of the GO-P(NH3: Ar = 1:3) were the highest. These were conducive to providing pseudocapacitance and reducing the internal resistance of the electrode. In addition, the ID/IG of the GO-P(NH3: Ar = 1:3) (1.088) was also the highest, indicating the highest number of defects. The results of discharge parameters measurement and in situ optical emission spectroscopy diagnosis of NH3 plasma showed that the discharge is the strongest when the ratio of NH3: Ar was 1:3, thereby the generated nitrogen active species can effectively promote N-doping. The N-doping and abundant defects were the keys to the excellent electrochemical performance of the GO-P(NH3: Ar = 1:3). NH3 cold plasma is a simple and rapid method to prepare N-doped GO and regulate the N-doping to prepare high-performance supercapacitors.

  • This work is supported by National Natural Science Foundation of China (Nos. 52077024, 21773020, 21673026, 11505019), State Key Laboratory of Structural Analysis for Industrial Equipment, and Dalian University of Technology (No. GZ21105).

  • [1]
    Wang G P, Zhang L and Zhang J J 2012 Chem. Soc. Rev. 41 797 doi: 10.1039/C1CS15060J
    [2]
    Zhang M et al 2021 J. Electroanal. Chem. 897 115543 doi: 10.1016/j.jelechem.2021.115543
    [3]
    Brousse T, Bélanger D and Long J W 2015 J. Electrochem. Soc. 162 A5185 doi: 10.1149/2.0201505jes
    [4]
    Chen C J et al 2017 Energy Environ. Sci. 10 538 doi: 10.1039/C6EE03716J
    [5]
    Lin X D et al 2017 ACS Sustain. Chem. Eng. 5 8535 doi: 10.1021/acssuschemeng.7b02462
    [6]
    Wang H Y et al 2020 Int. J. Hydrog. Energy 45 21380 doi: 10.1016/j.ijhydene.2020.05.209
    [7]
    Yang W, Li Y J and Feng Y Y 2018 Materials 11 2455 doi: 10.3390/ma11122455
    [8]
    Hsu Y K et al 2012 J. Mater. Chem. 22 3383 doi: 10.1039/c1jm14716a
    [9]
    Dreyer D R et al 2010 Chem. Soc. Rev. 39 228 doi: 10.1039/B917103G
    [10]
    Li C et al 2017 Adv. Mater. 29 1604690 doi: 10.1002/adma.201604690
    [11]
    Liu H D et al 2014 Electrochim. Acta 138 69 doi: 10.1016/j.electacta.2014.06.051
    [12]
    Han J et al 2013 ACS Nano 7 19 doi: 10.1021/nn3034309
    [13]
    Fan M M et al 2016 J. Mater. Sci. 51 10323 doi: 10.1007/s10853-016-0250-8
    [14]
    Yeom D Y et al 2015 Sci. Rep. 5 9817 doi: 10.1038/srep09817
    [15]
    Wen Z H et al 2012 Adv. Mater. 24 5610 doi: 10.1002/adma.201201920
    [16]
    Wang X R et al 2009 Science 324 768 doi: 10.1126/science.1170335
    [17]
    Liu F C et al 2013 Appl. Phys. Lett. 103 123108 doi: 10.1063/1.4821579
    [18]
    Fan Z Y et al 2021 Plasma Sci. Technol. 23 035502 doi: 10.1088/2058-6272/abe200
    [19]
    Wang Y Q et al 2018 J. Mater. Chem. A 6 2011 doi: 10.1039/C7TA08607E
    [20]
    Wang K L et al 2017 Nano Energy 31 486 doi: 10.1016/j.nanoen.2016.11.007
    [21]
    Miao Y L, Ma Y L and Wang Q 2019 ACS Sustain. Chem. Eng. 7 7597 doi: 10.1021/acssuschemeng.8b05838
    [22]
    Sun H M et al 2020 Appl. Surf. Sci. 527 146574 doi: 10.1016/j.apsusc.2020.146574
    [23]
    Liu T et al 2019 Appl. Catal. A 588 117278 doi: 10.1016/j.apcata.2019.117278
    [24]
    Akada K, Obata S and Saiki K 2019 ACS Omega 4 16531 doi: 10.1021/acsomega.9b02208
    [25]
    Ma J W et al 2018 Small 14 1702895 doi: 10.1002/smll.201702895
    [26]
    Mao S J, Wang C P and Wang Y 2019 J. Catal. 375 456 doi: 10.1016/j.jcat.2019.06.039
    [27]
    Zhu Z H et al 2005 J. Phys. Chem. B 109 16744 doi: 10.1021/jp051787o
    [28]
    Jiang B J et al 2012 Appl. Surf. Sci. 258 3438 doi: 10.1016/j.apsusc.2011.11.091
    [29]
    Tao H C et al 2017 Chem. Commun. 53 873 doi: 10.1039/C6CC08776K
    [30]
    Wu G J et al 2013 Appl. Catal. B 136–137 177 doi: 10.1016/j.apcatb.2013.01.067
    [31]
    Panomsuwan G, Saito N and Ishizaki T 2016 Carbon 98 411 doi: 10.1016/j.carbon.2015.11.013
    [32]
    Cuesta A et al 1994 Carbon 32 1523 doi: 10.1016/0008-6223(94)90148-1
    [33]
    Huang X X et al 2017 Nanoscale 9 8102 doi: 10.1039/C7NR00988G
    [34]
    Shen L et al 2018 RSC Adv. 8 17209 doi: 10.1039/C8RA01486H
    [35]
    Wang Y H et al 2019 J. Mater. Sci.: Mater. Electron. 30 8944 doi: 10.1007/s10854-019-01222-2
    [36]
    Chang Z S et al 2016 Phys. Plasmas 23 093503 doi: 10.1063/1.4962183
    [37]
    Wang L et al 2017 Plasma Process. Polym. 14 1600111 doi: 10.1002/ppap.201600111
    [38]
    Cheng L L et al 2018 Electrochim. Acta 259 587 doi: 10.1016/j.electacta.2017.11.022
    [39]
    Yi H T et al 2015 J. Alloys Compd. 649 851 doi: 10.1016/j.jallcom.2015.03.135
    [40]
    Xing L B et al 2015 Mater. Lett. 147 97 doi: 10.1016/j.matlet.2015.02.031
    [41]
    Wu Q et al 2019 J. Alloys Compd. 786 826 doi: 10.1016/j.jallcom.2019.02.052
    [42]
    Tan Y Y et al 2018 Appl. Surf. Sci. 455 683 doi: 10.1016/j.apsusc.2018.05.161
    [43]
    Zdolšek N et al 2019 Electrochim. Acta 298 541 doi: 10.1016/j.electacta.2018.12.129
    [44]
    Sun L et al 2019 Appl. Surf. Sci. 467–468 382 doi: 10.1016/j.apsusc.2018.10.192
  • Related Articles

    [1]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [2]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [3]Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [7]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [8]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15
  • Cited by

    Periodical cited type(2)

    1. Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499
    2. Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690

    Other cited types(0)

Catalog

    Figures(11)  /  Tables(3)

    Article views (126) PDF downloads (67) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return