Citation: | Kang AN, Shuai ZHANG, Siwu SHAO, Jinlong LIU, Junjun WEI, Liangxian CHEN, Yuting ZHENG, Qing LIU, Chengming LI. Effects of the electric field at the edge of a substrate to deposit a Ø100 mm uniform diamond film in a 2.45 GHz MPCVD system[J]. Plasma Science and Technology, 2022, 24(4): 045502. DOI: 10.1088/2058-6272/ac4deb |
In this study, uniform diamond films with a diameter of 100 mm were deposited in a 15 kW/2.45 GHz ellipsoidal microwave plasma chemical vapour deposition system. A phenomenological model previously developed by our group was used to simulate the distribution of the electric strength and electron density of plasma. Results indicate that the electric field in the cavity includes multiple modes, i.e. TM02 and TM03. When the gas pressure exceeds 10 kPa, the electron density of plasma increases and plasma volume decreases. A T-shaped substrate was developed to achieve uniform temperature, and the substrate was suspended in air from Ø70 to 100 mm, thus eliminating vertical heat dissipation. An edge electric field was added to the system after the introduction of the T-shaped substrate. Moreover, the plasma volume in this case was greater than that in the central electric field but smaller than that in the periphery electric field of the TM02 mode. This indicates that the electric field above and below the edge benefits the plasma volume rather than the periphery electric field of the TM02 mode. The quality, uniformity and surface morphology of the deposited diamond films were primarily investigated to maintain substrate temperature uniformity. When employing the improved substrate, the thickness unevenness of the Ø100 mm diamond film decreased from 22% to 7%.
This work was sponsored by National Key Research and Development Program of China (No. 2019YFE03100200), National Natural Science Foundation of China (No. 5210020483), Postdoc Research Foundation of Shunde Graduate School of University of Science and Technology Beijing (No. 2020BH015) and Fundamental Research Funds for the Central Universities (No. FRF-MP-20-48). The authors are very grateful for their financial support.
Supplementary material for this article is available https://doi.org/10.1088/2058-6272/ac4deb
[1] |
Xu P et al 2020 Plasma Sci. Technol. 22 125601 doi: 10.1088/2058-6272/aba512
|
[2] |
Schreck M et al 2017 Sci. Rep. 7 44462 doi: 10.1038/srep44462
|
[3] |
Liang Y F et al 2021 Diam. Rel. Mater. 117 108461 doi: 10.1016/j.diamond.2021.108461
|
[4] |
Herlinger J 2006 Thin Solid Films 501 65 doi: 10.1016/j.tsf.2005.07.108
|
[5] |
Zimmer J W, Chandler G and Sharda T 2008 Thin Solid Films 516 696 doi: 10.1016/j.tsf.2007.06.050
|
[6] |
Kozue K et al 2013 Plasma Sci. Technol. 15 89 doi: 10.1088/1009-0630/15/2/01
|
[7] |
Guo J C et al 2016 Appl. Surf. Sci. 370 237 doi: 10.1016/j.apsusc.2016.02.158
|
[8] |
An K et al 2015 Vacuum 117 112 doi: 10.1016/j.vacuum.2015.04.023
|
[9] |
Su J J et al 2013 Development of cylinderical cavity type microwave plasma CVD reactor for diamond films deposition 19th IEEE Pulsed Power Conf. (PPC) (San Francisco: IEEE) p 1
|
[10] |
Yu S W et al 2016 J. Phys. D: Appl. Phys. 49 355202 doi: 10.1088/0022-3727/49/35/355202
|
[11] |
Li Y F et al 2014 Diam. Relat. Mater. 44 88 doi: 10.1016/j.diamond.2014.02.010
|
[12] |
Vikharev A L et al 2018 Diam. Relat. Mater. 83 8 doi: 10.1016/j.diamond.2018.01.011
|
[13] |
Weng J et al 2018 Vacuum 147 134 doi: 10.1016/j.vacuum.2017.10.026
|
[14] |
Zuo S S et al 2008 Diam. Relat. Mater. 17 300 doi: 10.1016/j.diamond.2007.12.069
|
[15] |
Silva F et al 2009 J. Phys. : Condens. Matt. 21 364202 doi: 10.1088/0953-8984/21/36/364202
|
[16] |
Hassouni K, Silva F and Gicquel A 2010 J. Phys. D: Appl. Phys. 43 153001 doi: 10.1088/0022-3727/43/15/153001
|
[17] |
Weng J et al 2012 Diam. Relat. Mater. 30 15 doi: 10.1016/j.diamond.2012.09.007
|
[18] |
Gu Y J et al 2012 Diam. Relat. Mater. 24 210 doi: 10.1016/j.diamond.2012.01.026
|
[19] |
Li X J et al 2011 Diam. Relat. Mater. 20 480 doi: 10.1016/j.diamond.2011.01.046
|
[20] |
Su J J et al 2014 Vacuum 107 51 doi: 10.1016/j.vacuum.2014.04.002
|
[21] |
Li X J et al 2011 Diam. Relat. Mater. 20 374 doi: 10.1016/j.diamond.2011.01.025
|
[22] |
Su J J et al 2014 Diam. Relat. Mater. 42 28 doi: 10.1016/j.diamond.2013.12.001
|
[23] |
Li Y F 2015 Design of high power MPCVD reactors and synthesis of high quality diamond films PhD Thesis University of Science and Technology Beijing, Beijing (in Chinese)
|
[24] |
Li Y F et al 2015 Diam. Relat. Mater. 51 24 doi: 10.1016/j.diamond.2014.11.004
|
[25] |
An K et al 2017 Plasma Sci. Technol. 19 095505 doi: 10.1088/2058-6272/aa7458
|
[26] |
Pleuler E et al 2002 Diam. Relat. Mater. 11 467 doi: 10.1016/S0925-9635(01)00731-2
|
[27] |
Weng J et al 2013 Appl. Surf. Sci. 276 529 doi: 10.1016/j.apsusc.2013.03.128
|
[28] |
Popovich A F et al 2017 Plasma Sci. Technol. 19 035503 doi: 10.1088/2058-6272/19/3/035503
|
[29] |
Weng J et al 2010 Plasma Sci. Technol. 12 761 doi: 10.1088/1009-0630/12/6/23
|
[1] | Peiyu JI (季佩宇), Jun YU (於俊), Tianyuan HUANG (黄天源), Chenggang JIN (金成刚), Yan YANG (杨燕), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). Mechanism of high growth rate for diamond-like carbon films synthesized by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2018, 20(2): 25505-025505. DOI: 10.1088/2058-6272/aa94bd |
[2] | Kang AN (安康), Liangxian CHEN (陈良贤), Jinlong LIU (刘金龙), Yun ZHAO (赵云), Xiongbo YAN (闫雄伯), Chenyi HUA (化称意), Jianchao GUO (郭建超), Junjun WEI (魏俊俊), Lifu HEI (黑立富), Chengming LI (李成明), Fanxiu LU (吕反修). The effect of substrate holder size on the electric field and discharge plasma on diamond-film formation at high deposition rates during MPCVD[J]. Plasma Science and Technology, 2017, 19(9): 95505-095505. DOI: 10.1088/2058-6272/aa7458 |
[3] | LI Guozhan(李国占), CHEN Fu(陈浮), LI Linxi(李林熙), SONG Yanping(宋彦萍). Large Eddy Simulation of the E?ects of Plasma Actuation Strength on Film Cooling Efficiency[J]. Plasma Science and Technology, 2016, 18(11): 1101-1109. DOI: 10.1088/1009-0630/18/11/08 |
[4] | WU Zhonghang (吴忠航), LIANG Rongqing (梁荣庆), Masaaki NAGATSU (永津雅章), CHANG Xijiang (昌锡江). The Characteristics of Columniform Surface Wave Plasma Excited Around a Quartz Rod by 2.45 GHz Microwaves[J]. Plasma Science and Technology, 2016, 18(10): 987-991. DOI: 10.1088/1009-0630/18/10/04 |
[5] | DUANMU Gang(端木刚), ZHAO Changming(赵长明), LIANG Chao(梁超), XU Yuemin(徐跃民). Numerical Simulation of Dual-Channel Communication of Column Plasma Antenna Excited by a Surface Wave[J]. Plasma Science and Technology, 2014, 16(11): 1059-1062. DOI: 10.1088/1009-0630/16/11/11 |
[6] | ZHUANG Juan (庄娟), SUN Jizhong (孙继忠), SANG Chaofeng (桑超峰), WANG Dezhen (王德真). Numerical Simulation of VHF E®ects on Densities of Important Species for Silicon Film Deposition at Atmospheric Pressure[J]. Plasma Science and Technology, 2012, 14(12): 1106-1109. DOI: 10.1088/1009-0630/14/12/13 |
[7] | XIONG Liwei (熊礼威), WANG Jianhua (汪建华), LIU Fan (刘繁), MAN Weidong (满卫东), et al. Deposition and Boron Doping of Nano-Crystalline Diamond Thin Films on Poly-crystalline Diamond Thick Films[J]. Plasma Science and Technology, 2012, 14(10): 905-908. DOI: 10.1088/1009-0630/14/10/09 |
[8] | BAI Bing (白冰), ZHA Jun (査俊), ZHANG Xiaoning (张晓宁), WANG Cheng (王城), XIA Weidong (夏维东). Simulation of Magnetically Dispersed Arc Plasma[J]. Plasma Science and Technology, 2012, 14(2): 118-121. DOI: 10.1088/1009-0630/14/2/07 |
[9] | DENG Yongfeng(邓永锋), TAN Chang(谭畅), HAN Xianwei(韩先伟), TAN Yonghua(谭永华). Numerical Simulation of the Self-Heating Effect Induced by Electron Beam Plasma in Atmosphere[J]. Plasma Science and Technology, 2012, 14(2): 89-93. DOI: 10.1088/1009-0630/14/2/01 |
[10] | RU Lili (汝丽丽), HUANG Jianjun (黄建军), GAO Liang (高亮), QI Bing (齐冰). Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering[J]. Plasma Science and Technology, 2010, 12(5): 551-555. |
1. | Yang, Z., An, K., Liu, Y. et al. Edge effect during microwave plasma chemical vapor deposition diamond-film: Multiphysics simulation and experimental verification. International Journal of Minerals, Metallurgy and Materials, 2024, 31(10): 2287-2299. DOI:10.1007/s12613-024-2834-7 | |
2. | Feng, X., Yuan, X., Chen, L. et al. Preparation of CNT/diamond composite via MPCVD: The interface behavior. Diamond and Related Materials, 2024. DOI:10.1016/j.diamond.2024.111432 | |
3. | Yang, Z., Guo, Z., An, K. et al. Effect of argon addition on CH4-H2 microwave plasma: Self-consistent simulation and nanodiamond coating deposition. Surface and Coatings Technology, 2024. DOI:10.1016/j.surfcoat.2024.131165 | |
4. | An, K., Liu, P., Zhang, Y. et al. Prestressing method to inhibit crack initiation and expansion in a large-sized diamond film during polishing. Diamond and Related Materials, 2024. DOI:10.1016/j.diamond.2024.111022 | |
5. | Yang, Z., An, K., Feng, X. et al. Explore the growth mechanism of high-quality diamond under high average power density in the MPCVD reactor. Materials Science and Engineering: B, 2024. DOI:10.1016/j.mseb.2024.117248 | |
6. | Yang, Z., Yang, A., Liu, P. et al. Preparation of 3-inch Diamond Film on Silicon Substrate for Thermal Management | [热管理用 3 英寸硅衬底金刚石薄膜的制备]. Wuji Cailiao Xuebao/Journal of Inorganic Materials, 2024, 39(3): 283-290. DOI:10.15541/jim20230476 | |
7. | Yang, Z., Liu, Y., Guo, Z. et al. Deposition of uniform diamond films on three dimensional Si spheres by using faraday cage in MPCVD reactor. Diamond and Related Materials, 2024. DOI:10.1016/j.diamond.2023.110767 | |
8. | Gao, P., Wang, C., Peng, J. et al. Influence of temperature on the phase structure, surface morphology, mechanical and tribological properties of Ti–N coatings prepared by MPCVD. Ceramics International, 2024, 50(1): 474-483. DOI:10.1016/j.ceramint.2023.10.123 | |
9. | Weng, J., Liu, F., Wang, Z.T. et al. Investigation on the preparation of large area diamond films with 150–200 mm in diameter using 915 MHz MPCVD system. Vacuum, 2023. DOI:10.1016/j.vacuum.2023.112543 | |
10. | Zeng, Y., Sakamoto, Y. Effect of frequency on low temperature synthesis of diamond by pulsed discharge MPCVD. Results in Materials, 2023. DOI:10.1016/j.rinma.2023.100416 | |
11. |
Zhang, S., An, K., Shao, S. et al. Microwave Power and Deposition Pressure Matching of MPCVD Diamond Films | [MPCVD金刚石薄膜微波功率和沉积压力匹配性研究]. Rengong Jingti Xuebao/Journal of Synthetic Crystals, 2022, 51(5): 910-919.
![]() |