Advanced Search+
Yanjun ZHAO, Guohua NI, Wei LIU, Hongmei SUN, Siyuan SUI, Dongdong LI, Huan ZHENG, Zhongyang MA, Chi ZHANG. Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations[J]. Plasma Science and Technology, 2022, 24(5): 055407. DOI: 10.1088/2058-6272/ac4ee7
Citation: Yanjun ZHAO, Guohua NI, Wei LIU, Hongmei SUN, Siyuan SUI, Dongdong LI, Huan ZHENG, Zhongyang MA, Chi ZHANG. Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations[J]. Plasma Science and Technology, 2022, 24(5): 055407. DOI: 10.1088/2058-6272/ac4ee7

Dynamic characteristics of multi-arc thermal plasma in four types of electrode configurations

More Information
  • Author Bio:

    Guohua NI, E-mail: ghni@ipp.ac.cn

  • Received Date: October 26, 2021
  • Revised Date: January 21, 2022
  • Accepted Date: January 24, 2022
  • Available Online: December 11, 2023
  • Published Date: April 12, 2022
  • The enhanced volume of thermal plasma is produced by a multi-arc thermal plasma generator with three pairs of discharge electrodes driven by three directed current power suppliers. Combined with a high-speed camera and an oscilloscope, which acquire optical and electric signals synchronously, the dynamic behavior of different kinds of multi-arc discharge adjusted by the electrode arrangement is investigated. Also, the spatial distributions and instability of the arc discharge are analyzed in four electrode configurations using the gray value statistical method. It is found that the cathodic arcs mainly show a contracting state, while the anodic arcs have a trend of transition from shrinkage to a diffusion-like state with the increase of the discharge current. As a result of the adjustment of the electrode configuration, a high temperature region formed in the center of the discharge region in configurations of adjacent electrodes with opposite flow distribution and opposite electrodes with swirl flow distribution due to severe fluctuation of arcs. The discharge voltage rises with increased discharge current in this novel multi-arc plasma generator. It is also found that anode ablation mainly occurs on the conical surface at the copper electrode tip, while cathode erosion mainly occurs on the surface of the inserted tungsten and the nearby copper.

  • This work was supported by National Natural Science Foundation of China (No. 11875295), and the National Key R&D Program of China (No. 2019YFC0119000).

  • [1]
    Jones G R and Fang M T C 1980 Rep. Prog. Phys. 43 1415 doi: 10.1088/0034-4885/43/12/002
    [2]
    Guo Z W et al 2015 Int. J. Heat Mass Transf. 80 644 doi: 10.1016/j.ijheatmasstransfer.2014.09.059
    [3]
    Trelles J P et al 2009 J. Therm. Spray Technol. 18 728 doi: 10.1007/s11666-009-9342-1
    [4]
    Fauchais P 2004 J. Phys. D: Appl. Phys. 37 R86 doi: 10.1088/0022-3727/37/9/R02
    [5]
    Cetegen B M and Yu W 1999 J. Therm. Spray Technol. 8 57 doi: 10.1361/105996399770350575
    [6]
    Samal S 2017 J. Clean. Prod. 142 3131 doi: 10.1016/j.jclepro.2016.10.154
    [7]
    Cho D W et al 2013 J. Mater. Process. Technol. 213 2278 doi: 10.1016/j.jmatprotec.2013.06.017
    [8]
    Heberlein J and Murphy A B 2008 J. Phys. D: Appl. Phys. 41 053001 doi: 10.1088/0022-3727/41/5/053001
    [9]
    Marqués J L, Forster G and Schein J 2009 Open Plasma Phys. J. 2 89 doi: 10.2174/1876534300902010089
    [10]
    Yao Y C et al 2008 Sci. Technol. Adv. Mater. 9 025013 doi: 10.1088/1468-6996/9/2/025013
    [11]
    Muggli F A et al 2007 J. Therm. Spray Technol. 16 677 doi: 10.1007/s11666-007-9098-4
    [12]
    Wang C et al 2017 Chin. Phys. B 26 085207 doi: 10.1088/1674-1056/26/8/085207
    [13]
    Wang C et al 2017 Plasma Chem. Plasma Process 37 371 doi: 10.1007/s11090-016-9782-6
    [14]
    Rehmet C et al 2013 Plasma Chem. Plasma Process 33 779 doi: 10.1007/s11090-013-9458-4
    [15]
    Rehmet C et al 2014 Plasma Chem. Plasma Process 34 975 doi: 10.1007/s11090-014-9536-2
    [16]
    Watanabe T, Liu Y P and Tanaka M 2014 Plasma Chem. Plasma Process 34 443 doi: 10.1007/s11090-014-9530-8
    [17]
    Liu Y P et al 2014 Int. J. Appl. Glas. Sci. 5 443 doi: 10.1111/ijag.12081
    [18]
    Yao Y C et al 2009 Plasma Chem. Plasma Process 29 333 doi: 10.1007/s11090-009-9182-2
    [19]
    Perkins J F and Frost L S 1972 IEEE Trans. Power Appar. Syst. PAS-91 376 doi: 10.1109/TPAS.1972.293218
    [20]
    Gauvin W H 1989 Plasma Chem. Plasma Process 9 65S doi: 10.1007/BF01015874
    [21]
    Lin Q F et al 2020 Chin. Phys. B 29 125201 doi: 10.1088/1674-1056/ab9de9
    [22]
    Takana H et al 2011 J. Therm. Spray Technol. 20 432 doi: 10.1007/s11666-010-9547-3
    [23]
    Qiu J E et al 2020 Plasma Sci. Technol. 22 115503 doi: 10.1088/2058-6272/aba8ed
    [24]
    Liu S H et al 2019 Plasma Chem. Plasma Process 39 377 doi: 10.1007/s11090-018-9949-4
    [25]
    Pan W X, Meng X and Wu C K 2006 Plasma Sci. Technol. 8 416 doi: 10.1088/1009-0630/8/4/10
  • Related Articles

    [1]Xiaonan Wang, Xiaofei LAN, Yongsheng HUANG, Youge JIANG, Chunlei ZHANG, Hao ZHANG, Tongpu YU. Prompt acceleration of a μ+ beam in a toroidal wakefield driven by a shaped steep-rising-front Laguerre–Gaussian laser pulse[J]. Plasma Science and Technology, 2022, 24(5): 055502. DOI: 10.1088/2058-6272/ac58eb
    [2]Wangwen XU, Zhanghu HU, Dexuan HUI, Younian WANG. High energy electron beam generation during interaction of a laser accelerated proton beam with a gas-discharge plasma[J]. Plasma Science and Technology, 2022, 24(5): 055001. DOI: 10.1088/2058-6272/ac4d1d
    [3]Mamat Ali BAKE, Aynisa TURSUN, Aimierding AIMIDULA, Baisong XIE (谢柏松). Two-stage γ ray emission via ultrahigh intensity laser pulse interaction with a laser wakefield accelerated electron beam[J]. Plasma Science and Technology, 2020, 22(10): 105201. DOI: 10.1088/2058-6272/ab988a
    [4]Nureli YASEN, Yajuan HOU (侯雅娟), Li WANG (王莉), Haibo SANG (桑海波), Mamat ALI BAKE, Baisong XIE (谢柏松). Enhancement of proton collimation and acceleration by an ultra-intense laser interacting with a cone target followed by a beam collimator[J]. Plasma Science and Technology, 2019, 21(4): 45201-045201. DOI: 10.1088/2058-6272/aaf7cf
    [5]Nureli YASEN, Chong LV (吕冲), Yajuan HOU (侯雅娟), Li WANG (王莉), Feng WAN (弯峰), Moran JIA (贾默然), Ibrahim SITIWALDI, Haibo SANG (桑海波), Mamat Ali BAKE, Baisong XIE (谢柏松). Fast electrons collimating and focusing by an ultraintense laser interacting with a high density layers[J]. Plasma Science and Technology, 2018, 20(12): 125201. DOI: 10.1088/2058-6272/aaccf2
    [6]Hanbing JIN (金晗冰), Cui MENG (孟萃), Yunsheng JIANG (姜云升), Ping WU (吴平), Zhiqian XU (徐志谦). Simulation of electromagnetic pulses generated by escaped electrons in a high- power laser chamber[J]. Plasma Science and Technology, 2018, 20(11): 115201. DOI: 10.1088/2058-6272/aac838
    [7]Jianxun LIU (刘建勋), Yanyun MA (马燕云), Xiaohu YANG (杨晓虎), Jun ZHAO (赵军), Tongpu YU (余同普), Fuqiu SHAO (邵福球), Hongbin ZHUO (卓红斌), Longfei GAN (甘龙飞), Guobo ZHANG (张国博), Yuan ZHAO (赵媛), Jingkang YANG (杨靖康). High-energy-density electron beam generation in ultra intense laser-plasma interaction[J]. Plasma Science and Technology, 2017, 19(1): 15001-015001. DOI: 10.1088/1009-0630/19/1/015001
    [8]TAO Ling(陶玲), HU Chundong(胡纯栋), XIE Yuanlai(谢远来). Numerical Simulation of Subcooled Boiling Inside High-Heat-Flux Component with Swirl Tube in Neutral Beam Injection System[J]. Plasma Science and Technology, 2014, 16(5): 512-520. DOI: 10.1088/1009-0630/16/5/12
    [9]LU Jianxin (路建新), LAN Xiaofei (兰小飞), WANG Leijian (王雷剑), XI Xiaofeng (席晓峰), et al. Proton Acceleration Driven by High-Intensity Ultraviolet Laser Interaction with a Gold Foil[J]. Plasma Science and Technology, 2013, 15(9): 863-865. DOI: 10.1088/1009-0630/15/9/05
    [10]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01

Catalog

    Figures(11)

    Article views (94) PDF downloads (45) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return