Advanced Search+
Peng ZHANG, Lanxiang SUN, Haibin YU, Peng ZENG. Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer[J]. Plasma Science and Technology, 2022, 24(8): 084006. DOI: 10.1088/2058-6272/ac52ea
Citation: Peng ZHANG, Lanxiang SUN, Haibin YU, Peng ZENG. Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer[J]. Plasma Science and Technology, 2022, 24(8): 084006. DOI: 10.1088/2058-6272/ac52ea

Quantitative analysis of the main components in ceramic raw materials based on the desktop LIBS analyzer

More Information
  • Author Bio:

    Lanxiang SUN, E-mail: sunlanxiang@sia.cn

  • Received Date: December 13, 2021
  • Revised Date: January 25, 2022
  • Accepted Date: February 07, 2022
  • Available Online: December 10, 2023
  • Published Date: June 28, 2022
  • The concentrations of SiO2, Al2O3, K2O, Na2O, CaO, MgO, Fe2O3 and TiO2, and loss on ignition (L.O.I.) are the main inorganic components of geological samples. Concentrations of the eight oxides and L.O.I. are also the main indicators of concern in the production of building ceramics. Quantitative analysis of the eight oxides and L.O.I. was performed using fiber-laser-based laser-induced breakdown spectroscopy (LIBS). A combination of continuous background deduction, full width at half maximum (FWHM) intensity integral and spectral sum normalization was proposed for data processing. After the data processing combined the continuous background deduction, FWHM intensity integral and spectral sum normalization, the mean absolute errors (MAEs) of the calibration of L.O.I., SiO2, Al2O3, K2O, Na2O, CaO, MgO, Fe2O3 and TiO2 was reduced from 2.03%, 12.06%, 4.84%, 1.10%, 0.69%, 0.31%, 0.11%, 0.20% and 0.10% to 1.80%, 9.48%, 2.12%, 0.36%, 0.58%, 0.11%, 0.08%, 0.19% and 0.05%, respectively. This multivariate method was further introduced and discussed to improve the analysis performance. The MAEs of L.O.I., SiO2, Al2O3, K2O and Na2O were further reduced to 1.12%, 2.07%, 1.38%, 0.35% and 0.43%, respectively. The results show that the overall prediction error can meet the requirements for the production of building ceramics. The LIBS desktop analyzer has great potential in detection applications on geological samples.

  • This work is supported by National Natural Science Foundation of China (No. 62173321), the Key Research Program of Frontier Sciences, CAS (No. QYZDJ-SSW-JSC037), the Science and Technology Service Network Initiative Program, CAS (No. KFJ-STS-QYZD-2021-19-002), the Liaoning Provincial Natural Science Foundation (No. 2021-BS-022) and the Youth Innovation Promotion Association, CAS.

  • [1]
    Rakovský J et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 101 269 doi: 10.1016/j.sab.2014.09.015
    [2]
    Li F et al 2020 Appl. Spectrosc. Rev. 55 263 doi: 10.1080/05704928.2019.1580715
    [3]
    Mohamed N et al 2021 Geostand. Geoanal. Res. 45 539 doi: 10.1111/ggr.12385
    [4]
    Sheta S et al 2019 J. Anal. At. Spectrom. 34 1047 doi: 10.1039/C9JA00016J
    [5]
    Dong F Z et al 2012 Front. Phys. 7 679 doi: 10.1007/s11467-012-0263-y
    [6]
    Sun L X et al 2015 Spectrochim. Acta Part B: At. Spectrosc. 112 40 doi: 10.1016/j.sab.2015.08.008
    [7]
    Harmon R S and Senesi G S 2021 Appl. Geochem. 128 104929 doi: 10.1016/j.apgeochem.2021.104929
    [8]
    Li C L et al 2018 J. Deep Space Explor. 5 406 doi: 10.15982/j.issn.2095-7777.2018.05.002
    [9]
    Ollila A M et al 2014 J. Geophys. Res. Planets 119 255 doi: 10.1002/2013JE004517
    [10]
    Villas-Boas P R et al 2020 Eur. J. Soil Sci. 71 789 doi: 10.1111/ejss.12888
    [11]
    Villas-Boas P R et al 2020 Eur. J. Soil Sci. 71 805 doi: 10.1111/ejss.12889
    [12]
    Ying L N and Zhou W D 2018 Acta Opt. Sin. 38 1214002 doi: 10.3788/AOS201838.1214002
    [13]
    Fabre C 2020 Spectrochim. Acta Part B: At. Spectrosc. 166 105799 doi: 10.1016/j.sab.2020.105799
    [14]
    Ge F et al 2020 Talanta 218 121119 doi: 10.1016/j.talanta.2020.121119
    [15]
    Elghniji K et al 2020 Min. Metall. Explor. 37 1753 doi: 10.1007/s42461-020-00269-8
    [16]
    Janovszky P et al 2021 J. Anal. At. Spectrom. 36 813 doi: 10.1039/D1JA00032B
    [17]
    Kiros A et al 2013 J. Archaeol. Sci. 40 2570 doi: 10.1016/j.jas.2013.01.028
    [18]
    Tang Y et al 2018 Appl. Opt. 57 6451 doi: 10.1364/AO.57.006451
    [19]
    Sanghapi H K et al 2016 Spectrochim. Acta Part B: At. Spectrosc. 122 9 doi: 10.1016/j.sab.2016.05.011
    [20]
    Chen N et al 2018 Chin. J. Anal. Chem. 46 74 doi: 10.1002/jccs.201700184
  • Related Articles

    [1]Lei LI (黎嫘), Ling ZHANG (张凌), Zong XU (许棕), Shigeru MORITA, Yunxin CHENG (程云鑫), Fengling ZHANG (张丰玲), Wenmin ZHANG (张文敏), Yanmin DUAN (段艳敏), Qing ZANG (臧庆), Shouxin WANG (王守信), Shuyu DAI (戴舒宇), Guizhong ZUO (左桂忠), Zhen SUN (孙震), Liang WANG (王亮), Xiaobin DING (丁晓彬), Jinping QIAN (钱金平), Haiqing LIU (刘海庆), Liqun HU (胡立群). Line identification of extreme ultraviolet (EUV) spectra from low-Z impurity ions in EAST tokamak plasmas[J]. Plasma Science and Technology, 2021, 23(7): 75102-075102. DOI: 10.1088/2058-6272/abfea2
    [2]Xingquan WU (伍兴权), Guosheng XU (徐国盛), Baonian WAN (万宝年), Jens Juul RASMUSSEN, Volker NAULIN, Anders Henry NIELSEN, Liang CHEN (陈良), Ran CHEN (陈冉), Ning YAN (颜宁), Linming SHAO (邵林明). A new model of the L–H transition and H-mode power threshold[J]. Plasma Science and Technology, 2018, 20(9): 94003-094003. DOI: 10.1088/2058-6272/aabb9e
    [3]Wulyu ZHONG (钟武律), Xiaolan ZOU (邹晓岚), Zhongbing SHI (石中兵), Xuru DUAN (段旭如), Min XU (许敏), Zengchen YANG (杨曾辰), Peiwan SHI (施培万), Min JIANG (蒋敏), Guoliang XIAO (肖国梁), Xianming SONG (宋显明), Jiaqi DONG (董家齐), Xuantong DING (丁玄同), Yong LIU (刘永), HL-A team (HL-A团队). Dynamics of oscillatory plasma flows prior to the H-mode in the HL-2A tokamak[J]. Plasma Science and Technology, 2017, 19(7): 70501-070501. DOI: 10.1088/2058-6272/aa6538
    [4]WANG Songbai(王松柏), LEI Guangjiu(雷光玖), LIU Dongping(刘东平), YANG Size(杨思泽). Balmer H α, H β and H γ Spectral Lines Intensities in High-Power RF Hydrogen Plasmas[J]. Plasma Science and Technology, 2014, 16(3): 219-222. DOI: 10.1088/1009-0630/16/3/08
    [5]LIU Peng (刘鹏), XU Guosheng (徐国盛), WANG Huiqian (汪惠乾), JIANG Min (蒋敏), et al.. Reciprocating Probe Measurements of L-H Transition in LHCD H-Mode on EAST[J]. Plasma Science and Technology, 2013, 15(7): 619-622. DOI: 10.1088/1009-0630/15/7/03
    [6]WANG Dongsheng (王东升), GUO Houyang (郭后扬), SHANG Yizi (尚毅梓), GAN Kaifu (甘开福), WANG Huiqian (汪惠乾), CHEN Yingjie (陈颖杰), et al. Radiative Divertor Plasma Behavior in L- and H-Mode Discharges with Argon Injection in EAST[J]. Plasma Science and Technology, 2013, 15(7): 614-618. DOI: 10.1088/1009-0630/15/7/02
    [7]WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07
    [8]HUANG Xianli (黄贤礼), SHI Zhongbing (石中兵), CUI Zhengying (崔正英), ZHONG Wulv (钟武律), DONG Yunbo (董云波), CHEN Chengyuan (陈程远), FENG Beibin (冯北滨), YAO Lianghua (姚良骅), LIU Zetian (刘泽田), DING Xuantong (丁玄同), et al. Heat Transport During H-Mode in the HL-2A Tokamak[J]. Plasma Science and Technology, 2013, 15(3): 221-224. DOI: 10.1088/1009-0630/15/3/06
    [9]WANG Erhui (王二辉), S. MORITA, M. GOTO, DONG Chunfeng (董春凤). Observation of the Two-Dimensional Distribution of Impurity Line Emissions Using a Space-Resolved EUV Spectrometer in LHD[J]. Plasma Science and Technology, 2013, 15(2): 106-109. DOI: 10.1088/1009-0630/15/2/05
    [10]Y. PIANROJ, T. ONJUN. Simulations of H-Mode Plasmas in Tokamak Using a Complete Core-Edge Modeling in the BALDUR Code[J]. Plasma Science and Technology, 2012, 14(9): 778-788. DOI: 10.1088/1009-0630/14/9/02

Catalog

    Figures(12)  /  Tables(16)

    Article views (116) PDF downloads (185) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return