Citation: | Shuang LI, Xinzheng GUO, Yongqiang FU, Jianjun LI, Ruobing ZHANG. Hydrophobicity changes of polluted silicone rubber introduced by spatial and dose distribution of plasma jet[J]. Plasma Science and Technology, 2022, 24(4): 044006. DOI: 10.1088/2058-6272/ac57ff |
The hydrophobicity of polluted silicone rubber was improved rapidly under plasma jet treatment. It is an important phenomenon of the interaction between the plasma jet and the porous surface, and shows a wide application prospect in the power system. In this process, the spatial characteristics and dose of plasma jet are very important. Therefore, the variation of hydrophobicity of polluted silicone rubber under plasma jet treatment was studied, and the spatial characteristics and dose of plasma jet on polluted silicone rubber were also investigated in the work. The results show that the surface property (hydrophilic or hydrophobic) depended on the dose of plasma applied to the surface. The effective treated area was a circle, and the contact angles changed along the radial direction of the circle. This was attributable to the diffusion of plasma bullets on the surface and the distribution of plasma species. The plasma dose could be characterized by the energy density of the plasma applied on the surface. With the increase of plasma dose, the surface contact angles first increased rapidly and then decreased gradually.
The work was supported by the Intergovernmental International Cooperation in Science and Technology Innovation Program (No. 2019YFE0115600), National Natural Science Foundation of China (No. 52177152), and Science, Technology and Innovation Commission of Shenzhen Municipality (No. JCYJ20180508152057527).
[1] |
Donnelly V M and Kornblit A 2013 J. Vac. Sci. Technol. A 31 050825 doi: 10.1116/1.4819316
|
[2] |
Ran H J et al 2021 Plasma Sci. Technol. 23 095502 doi: 10.1088/2058-6272/ac050d
|
[3] |
Hou W Q et al 2020 Colloids Surf. A: Physicochem. Eng. Asp. 586 124180 doi: 10.1016/j.colsurfa.2019.124180
|
[4] |
Lee J et al 2020 Plasma Sci. Technol. 22 105505 doi: 10.1088/2058-6272/ab9b5a
|
[5] |
Múgica-Vidal R et al 2021 Plasma Process. Polym. 18 2100046 doi: 10.1002/ppap.202100046
|
[6] |
Siddig E A A et al 2020 Plasma Sci. Technol. 22 055503 doi: 10.1088/2058-6272/ab65dd
|
[7] |
Thompson R et al 2021 Appl. Surf. Sci. 544 148929 doi: 10.1016/j.apsusc.2021.148929
|
[8] |
Chen T H et al 2021 Vacuum 186 110069 doi: 10.1016/j.vacuum.2021.110069
|
[9] |
Wu S L et al 2020 High Volt. 5 15 doi: 10.1049/hve.2019.0144
|
[10] |
Zhang R B et al 2016 IEEE Trans. Dielectr. Electr. Insul. 23 377 doi: 10.1109/TDEI.2015.005117
|
[11] |
Zhang R B et al 2017 Plasma Sci. Technol. 19 105505 doi: 10.1088/2058-6272/aa7c16
|
[12] |
Jia Z D et al 2006 IEEE Trans. Dielectr. Electr. Insul. 13 1317 doi: 10.1109/TDEI.2006.258203
|
[13] |
Hergert A et al 2017 IEEE Trans. Dielectr. Electr. Insul. 24 1057 doi: 10.1109/TDEI.2017.006146
|
[14] |
Li S et al 2019 IEEE Trans. Dielectr. Electr. Insul. 26 416 doi: 10.1109/TDEI.2018.007732
|
[15] |
Li S et al 2021 High Volt. ( https://doi.org/10.1049/hve2.12122)
|
[16] |
Dobrynin D et al 2009 New J. Phys. 11 115020 doi: 10.1088/1367-2630/11/11/115020
|
[17] |
Cheng H et al 2020 Phys. Plasmas 27 063514 doi: 10.1063/5.0008881
|
[18] |
Walther F et al 2007 J. Micromech. Microeng. 17 524 doi: 10.1088/0960-1317/17/3/015
|
[19] |
Fang Z, Qiu Y and Kuffel E 2004 J. Phys. D: Appl. Phys. 37 2261 doi: 10.1088/0022-3727/37/16/007
|
[20] |
Nania M, Matar O K and Cabral J T 2015 Soft Matter 11 3067 doi: 10.1039/C4SM02840F
|
[21] |
Görrn P and Wagner S 2010 J. Appl. Phys. 108 093522 doi: 10.1063/1.3482020
|
[22] |
Gidon D, Graves D B and Mesbah A 2019 Plasma Sources Sci. Technol. 28 085001 doi: 10.1088/1361-6595/ab2c66
|
[23] |
Teschke M et al 2005 IEEE Trans. Plasma Sci. 33 310 doi: 10.1109/TPS.2005.845377
|
[24] |
Chang Z S et al 2018 Sci. Rep. 8 7599 doi: 10.1038/s41598-018-25962-z
|
[25] |
Xian Y B et al 2014 Plasma Process. Polym. 11 1169 doi: 10.1002/ppap.201400126
|
1. | Tong, R., Zhou, Y., Zhong, W. et al. A new Q-band comb-based multi-channel microwave Doppler backward scattering diagnostic developed on the HL-3 tokamak. Plasma Science and Technology, 2025, 27(1): 015102. DOI:10.1088/2058-6272/ad8c86 |
2. | Macwan, T., Barada, K., Kubota, S. et al. New millimeter-wave diagnostics to locally probe internal density and magnetic field fluctuations in National Spherical Torus Experiment-Upgrade (invited). Review of Scientific Instruments, 2024, 95(8): 083527. DOI:10.1063/5.0219484 |
3. | Damba, J., Hong, R., Lantsov, R. et al. A Q-band frequency tunable Doppler backscattering (DBS) system for pedestal and scrape-off layer density fluctuation and flow measurements in the DIII-D tokamak. Review of Scientific Instruments, 2024, 95(8): 083512. DOI:10.1063/5.0219566 |
4. | Zhang, X., Yang, S., Fan, M. et al. A High-Speed Data Acquisition and Control System Based on LabVIEW for Long-Pulse Experiments. 2024. DOI:10.1109/CISCE62493.2024.10653131 |
5. | Liu, S., Zhou, C., Liu, A.D. et al. An E-band multi-channel Doppler backscattering system on EAST. Review of Scientific Instruments, 2023, 94(12): 123507. DOI:10.1063/5.0166949 |
6. | Molina Cabrera, P.A., Kasparek, W., Happel, T. et al. W-band tunable, multi-channel, frequency comb Doppler backscattering diagnostic in the ASDEX-Upgrade tokamak. Review of Scientific Instruments, 2023, 94(8): 083504. DOI:10.1063/5.0151271 |
7. | Nasu, T., Tokuzawa, T., Tsujimura, T.I. et al. Receiver circuit improvement of dual frequency-comb ka-band Doppler backscattering system in the large helical device (LHD). Review of Scientific Instruments, 2022, 93(11): 113518. DOI:10.1063/5.0101588 |
8. | Rhodes, T.L., Michael, C.A., Shi, P. et al. Design elements and first data from a new Doppler backscattering system on the MAST-U spherical tokamak. Review of Scientific Instruments, 2022, 93(11): 113549. DOI:10.1063/5.0101848 |
9. | Tokuzawa, T., Inagaki, S., Inomoto, M. et al. Application of Dual Frequency Comb Method as an Approach to Improve the Performance of Multi-Frequency Simultaneous Radiation Doppler Radar for High Temperature Plasma Diagnostics. Applied Sciences (Switzerland), 2022, 12(9): 4744. DOI:10.3390/app12094744 |
10. | Ren, X.H., Yang, Z.J., Shi, Z.B. et al. Development of a tunable multi-channel Doppler reflectometer on J-TEXT tokamak. Review of Scientific Instruments, 2021, 92(3): 033545. DOI:10.1063/5.0040915 |