Advanced Search+
Chenguang YAN, Ya XU, Peng ZHANG, Shiqi KANG, Xian ZHOU, Shuyou ZHU. Investigation of the gas bubble dynamics induced by an electric arc in insulation oil[J]. Plasma Science and Technology, 2022, 24(4): 044003. DOI: 10.1088/2058-6272/ac5af9
Citation: Chenguang YAN, Ya XU, Peng ZHANG, Shiqi KANG, Xian ZHOU, Shuyou ZHU. Investigation of the gas bubble dynamics induced by an electric arc in insulation oil[J]. Plasma Science and Technology, 2022, 24(4): 044003. DOI: 10.1088/2058-6272/ac5af9

Investigation of the gas bubble dynamics induced by an electric arc in insulation oil

More Information
  • Corresponding author:

    Chenguang YAN, E-mail: chgyan@xjtu.edu.cn

  • Received Date: September 29, 2021
  • Revised Date: March 01, 2022
  • Accepted Date: March 03, 2022
  • Available Online: December 15, 2023
  • Published Date: April 05, 2022
  • In this work, experimental and theoretical studies were carried out on arc-induced bubble dynamic behaviors in insulation oil. Direct experimental evidence indicated that the arc-induced bubble experiences pulsating growth rather than a continuous expansion. Furthermore, a theoretical model and numerical calculation method were proposed, which revealed the dynamic mechanism of bubble growth. Good agreement between the theoretical results and experimental observations verified the general correctness and feasibility of the proposed method.

  • This work is supported by National Natural Science Foundation of China (No. 51807151).

  • [1]
    Abi-Samra N et al 2009 IEEE Trans. Power Deliv. 24 1959 doi: 10.1109/TPWRD.2009.2028817
    [2]
    Mahieu W R 1975 IEEE Trans. Power Apparat. Syst. 94 1698 doi: 10.1109/T-PAS.1975.32013
    [3]
    Kawamura T et al 1988 Prevention of tank rupture due to internal fault of oil filled transformers Proc. of CIGRE (Paris)(CIGRE)
    [4]
    Hamel A, Dastous J B and Foata M 2003 IEEE Trans. Power Deliv. 18 113 doi: 10.1109/TPWRD.2002.803712
    [5]
    Dastous J B, Foata M and Hamel A 2003 IEEE Trans. Power Deliv. 18 120 doi: 10.1109/TPWRD.2002.803713
    [6]
    Muller S et al 2008 Prevention of transformer tank explosion: Part 1 — experimental tests on large transformers Proc. of ASME 2008 Pressure Vessels and Piping Conf. (Chicago)(ASME)357
    [7]
    Brady R et al 2008 Prevention of transformer tank explosion: Part 2 — development and application of a numerical simulation tool Proc. of ASME 2008 Pressure Vessels and Piping Conf. (Chicago)(ASME)49
    [8]
    Dastous J B Foata M 1991 Analysis of faults in distribution transformers with MSC/PISCES-2DELK Proc. of 1991 MSC World Users'Conf. (Los Angeles)(MSC)
    [9]
    Tadokoro T et al 2016 Electron. Commun. Jpn. 99 91 doi: 10.1002/ecj.11923
    [10]
    Tadokoro T et al 2018 Elect. Eng. Jpn. 202 43 doi: 10.1002/eej.23042
    [11]
    Wu Y et al 2014 J. Phys. D: Appl. Phys. 47 505204 doi: 10.1088/0022-3727/47/50/505204
    [12]
    Li M et al 2020 Plasma Sci. Technol. 22 024001 doi: 10.1088/2058-6272/ab511d
    [13]
    Working Group A2.33 2013 Guide for Transformer Fire Safety Practices CIGRÉ Technical Brochure 537 (Paris: CIGRÉ)
    [14]
    Dastous J B, Lanteigne J and Foata M 2010 IEEE Trans. Power Deliv. 25 1657 doi: 10.1109/TPWRD.2010.2047277
    [15]
    Brodeur S and Dastous J B 2020 IEEE Trans. Power Deliv. 35 699 doi: 10.1109/TPWRD.2019.2922505
    [16]
    Plesset M S and Prosperetti A 1977 Annu. Rev. Fluid Mech. 9 145 doi: 10.1146/annurev.fl.09.010177.001045
    [17]
    Lukes P et al 2005 J. Phys. D: Appl. Phys. 38 409 doi: 10.1088/0022-3727/38/3/010
    [18]
    Seo J H, Lele S K and Tryggvason G 2010 Phys. Fluids 22 063302 doi: 10.1063/1.3432503
    [19]
    Zhu L N et al 2013 Plasma Sci. Technol. 15 1053 doi: 10.1088/1009-0630/15/10/17
    [20]
    Brennen C E 2014 Cavitation and Bubble Dynamics(New York: Cambridge University Press)
    [21]
    Jiao Z H et al 2016 Plasma Sci. Technol. 18 1169 doi: 10.1088/1009-0630/18/12/05
    [22]
    Zhang S, Wang S P and Zhang A M 2016 Phys. Fluids 28 032109 doi: 10.1063/1.4944349
    [23]
    Cao Y et al 2018 Plasma Sci. Technol. 20 103001 doi: 10.1088/2058-6272/aacff4
    [24]
    Shan M L et al 2019 Plasma Sci. Technol. 21 074002 doi: 10.1088/2058-6272/ab0b62
    [25]
    Yan C G et al 2021 IEEE Trans. Power Deliv. 36 1245 doi: 10.1109/TPWRD.2020.3029447
  • Related Articles

    [1]Qianghua YUAN (袁强华), Pei REN (任佩), Yongjie ZHOU (周永杰), Guiqin YIN (殷桂琴), Chenzhong DONG (董晨钟). OES diagnostic of radicals in 33 MHz radio-frequency Ar/C2H5OH atmospheric pressure plasma jet[J]. Plasma Science and Technology, 2019, 21(2): 25402-025402. DOI: 10.1088/2058-6272/aaebd1
    [2]Yong WANG (王勇), Cong LI (李聪), Jielin SHI (石劼霖), Xingwei WU (吴兴伟), Hongbin DING (丁洪斌). Measurement of electron density and electron temperature of a cascaded arc plasma using laser Thomson scattering compared to an optical emission spectroscopic approach[J]. Plasma Science and Technology, 2017, 19(11): 115403. DOI: 10.1088/2058-6272/aa861d
    [3]Arnab SARKAR, Manjeet SINGH. Laser-induced plasma electron number density: Stark broadening method versus the Saha–Boltzmann equation[J]. Plasma Science and Technology, 2017, 19(2): 25403-025403. DOI: 10.1088/2058-6272/19/2/025403
    [4]WAN Gang (弯港), JIN Yong (金涌), LI Haiyuan (李海元), LI Baoming (栗保明). Study on Free Surface and Channel Flow Induced by Low-Temperature Plasma via Lattice Boltzmann Method[J]. Plasma Science and Technology, 2016, 18(3): 331-336. DOI: 10.1088/1009-0630/18/3/19
    [5]SUN Hao (孙昊), WU Yi (吴翊), RONG Mingzhe (荣命哲), GUO Anxiang (郭安祥), HAN Guiquan (韩桂全), LU Yanhui (卢彦辉). Investigation on the Dielectric Properties of CO2 and CO2-Based Gases Based on the Boltzmann Equation Analysis[J]. Plasma Science and Technology, 2016, 18(3): 217-222. DOI: 10.1088/1009-0630/18/3/01
    [6]WEI Linsheng(魏林生), XU Min(徐敏), YUAN Dingkun(袁定琨), ZHANG Yafang(章亚芳), HU Zhaoji(胡兆吉), TAN Zhihong(谭志洪). Electron Transport Coefficients and Effective Ionization Coefficients in SF 6 -O 2 and SF 6 -Air Mixtures Using Boltzmann Analysis[J]. Plasma Science and Technology, 2014, 16(10): 941-947. DOI: 10.1088/1009-0630/16/10/07
    [7]A. N. KLEIN, R. P. CARDOSO, H. C. PAVANATI, C. BINDER, A. M. MALISKA, G. HAMMES, D. FUS~AO, A. SEEBER, et al. DC Plasma Technology Applied to Powder Metallurgy: an Overview[J]. Plasma Science and Technology, 2013, 15(1): 70-81. DOI: 10.1088/1009-0630/15/1/12
    [8]M. M. MORSHED, S. M. DANIELS. Electron Density and Optical Emission Measurements of SF6/O2 Plasmas for Silicon Etch Processes[J]. Plasma Science and Technology, 2012, 14(4): 316-320. DOI: 10.1088/1009-0630/14/4/09
    [9]YU Hong(于红), YU Shenjing(于沈晶), REN Chunsheng(任春生), XIU Zhilong(修志龙). Plasma-Induced Degradation of Polypropene Plastics in Natural Volatile Constituents of Ledum palustre Herb[J]. Plasma Science and Technology, 2012, 14(2): 157-161. DOI: 10.1088/1009-0630/14/2/14
    [10]HUANG Zhijun(黄志军), WU Qingyou (吴青友), LI Xiang (李祥), SHANG Shuyong (尚书勇), DAI Xiaoyan (戴晓雁), YIN Yongxiang (印永祥). Synthesis and Characterization of Nano-sized Boron Powder Prepared by Plasma Torch[J]. Plasma Science and Technology, 2010, 12(5): 577-580.
  • Cited by

    Periodical cited type(2)

    1. Wei, Y., Chen, S., Wang, Y. et al. Research progress on refractory metal and metallic carbide/oxide powder preparation techniques | [难 熔 金 属 及 金 属 碳 /氧 化 物 粉 体 制 备 技 术 研 究 进 展]. Hangkong Xuebao/Acta Aeronautica et Astronautica Sinica, 2024, 45(3): 028719. DOI:10.7527/S1000-6893.2023.28719
    2. Zhu, H.-L., Li, X.-Y., Tong, H.-H. Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma | [三维数值模拟射频热等离子体的物理场分布]. Wuli Xuebao/Acta Physica Sinica, 2021, 70(15): 155202. DOI:10.7498/aps.70.20202135

    Other cited types(0)

Catalog

    Figures(11)

    Article views (167) PDF downloads (131) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return