Processing math: 100%
Advanced Search+
Shanlu GAO, Xiaoju LIU, Guozhong DENG, Tingfeng MING, Guoqiang LI, Xuexi ZHANG, Xiaodong WU, Xiaohe WU, Bang LI, Haochen FAN, Xiang GAO. Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075104. DOI: 10.1088/2058-6272/ac608f
Citation: Shanlu GAO, Xiaoju LIU, Guozhong DENG, Tingfeng MING, Guoqiang LI, Xuexi ZHANG, Xiaodong WU, Xiaohe WU, Bang LI, Haochen FAN, Xiang GAO. Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075104. DOI: 10.1088/2058-6272/ac608f

Simulation studies of tungsten impurity behaviors during neon impurity seeding with tungsten bundled charge state model using SOLPS-ITER on EAST

More Information
  • Corresponding author:

    Xiaoju LIU, E-mail: julie1982@ipp.ac.cn

    Xiang GAO, E-mail: xgao@ipp.ac.cn

  • Received Date: November 28, 2021
  • Revised Date: February 10, 2022
  • Accepted Date: March 22, 2022
  • Available Online: December 13, 2023
  • Published Date: June 28, 2022
  • An investigation into tungsten (W) impurity behaviors with the update of the EAST lower W divertor for H-mode has been carried out using SOLPS-ITER. This work aims to study the effect of external neon (Ne) impurity seeding on W impurity sputtering with the bundled charge state model. As the Ne seeding rate increases, plasma parameters, W concentration (CW), and eroded W flux (ΓEroW) at both targets are compared and analyzed between the highly resolved bundled model 'jett' and the full W charge state model. The results indicate that 'jett' can produce divertor behaviors essentially in agreement with the full W charge state model. The bundled scheme with high resolution in low W charge states (< W20+) has no obvious effect on the Ne impurity distribution and thus little effect on W sputtering by Ne. Meanwhile, parametric scans of radial particle and thermal transport diffusivities (D and χe,i) in the SOL are simulated using the 'jett' bundled model. The results indicate that the transport diffusivity variations have significant influences on the divertor parameters, especially for W impurity sputtering.

  • The authors would like to thank Yilin Wang for her comments and suggestions. This work is supported by National Natural Science Foundation of China (Nos. 12075283 and 11975271).

  • [1]
    Philipps V 2011 J. Nucl. Mater. 415 S2 doi: 10.1016/j.jnucmat.2011.01.110
    [2]
    ITER Physics Expert Group on Divertor et al 1999 Nucl. Fusion 39 2391 doi: 10.1088/0029-5515/39/12/304
    [3]
    Liu X J et al 2017 Phys. Plasmas 24 122509 doi: 10.1063/1.4997101
    [4]
    Lore J D et al 2019 Plasma Phys. Control. Fusion 61 065001 doi: 10.1088/1361-6587/ab110e
    [5]
    Xu H C et al 2018 IEEE Trans. Plasma Sci. 46 1412 doi: 10.1109/TPS.2018.2815034
    [6]
    Gao S L et al 2021 AIP Adv. 11 025233 doi: 10.1063/5.0037381
    [7]
    Bonnin X and Coster D 2011 J. Nucl. Mater. 415 S488 doi: 10.1016/j.jnucmat.2010.10.041
    [8]
    Wiesen S et al 2015 J. Nucl. Mater. 463 480 doi: 10.1016/j.jnucmat.2014.10.012
    [9]
    Reiter D, Baelmans M and Börner P 2005 Fusion Sci. Technol. 47 172 doi: 10.13182/FST47-172
    [10]
    Kaveeva E et al 2020 Nucl. Fusion 60 046019 doi: 10.1088/1741-4326/ab73c1
    [11]
    Sang C F et al 2016 Nucl. Fusion 56 106018 doi: 10.1088/0029-5515/56/10/106018
    [12]
    Hechtl E, Bohdansky J and Roth J 1981 J. Nucl. Mater. 103 333 doi: 10.1016/0022-3115(82)90619-5
    [13]
    Sytova E et al 2020 Phys. Plasmas 27 082507 doi: 10.1063/5.0006607
    [14]
    Huang J et al 2014 Plasma Phys. Control. Fusion 56 075023 doi: 10.1088/0741-3335/56/7/075023
    [15]
    Chankin A V, Coster D P and Dux R 2014 Plasma Phys. Control. Fusion 56 025003 doi: 10.1088/0741-3335/56/2/025003
    [16]
    Brooks J N et al 2015 Fusion Eng. Des. 94 67 doi: 10.1016/j.fusengdes.2015.03.022
    [17]
    Ding R et al 2016 Nucl. Fusion 56 016021 doi: 10.1088/0029-5515/56/1/016021
    [18]
    Xie H et al 2017 Phys. Plasmas 24 092512 doi: 10.1063/1.4991457
    [19]
    Yamamura Y, Itikawa Y and Itoh N 1983 Angular Dependence of Sputtering Yields of Monatomic Solids Report Number IPPJ-AM-26 (Nagoya: Institute of Plasma Physics Nagoya University)
    [20]
    Eckstein W 1997 J. Nucl. Mater. 248 1 doi: 10.1016/S0022-3115(97)00109-8
    [21]
    Zhao X L et al 2020 Plasma Phys. Control. Fusion 62 055015 doi: 10.1088/1361-6587/ab831b
    [22]
    Wang Y L et al 2021 Plasma Phys. Control. Fusion 63 085002 doi: 10.1088/1361-6587/ac0351
    [23]
    Warrier M, Schneider R and Bonnin X 2004 Comput. Phys. Commun. 160 46 doi: 10.1016/j.cpc.2004.02.011
    [24]
    Eckstein W 2008 Vacuum 82 930 doi: 10.1016/j.vacuum.2007.12.004
    [25]
    Sang C F et al 2018 Phys. Plasmas 25 072511 doi: 10.1063/1.5038848
    [26]
    Sang C F et al 2020 Nucl. Fusion 60 056011 doi: 10.1088/1741-4326/ab7c29
    [27]
    Deng G Z et al 2020 Nucl. Fusion 60 082007 doi: 10.1088/1741-4326/ab70d6
    [28]
    Deng G Z et al 2021 Nucl. Fusion 61 106015 doi: 10.1088/1741-4326/ac1546
    [29]
    Kukushkin A S et al 2013 J. Nucl. Mater. 438 S203 doi: 10.1016/j.jnucmat.2013.01.027
    [30]
    Meier E T et al 2016 Plasma Phys. Control. Fusion 58 125012 doi: 10.1088/0741-3335/58/12/125012
    [31]
    Li Z Y et al 2019 Nucl. Fusion 59 046014 doi: 10.1088/1741-4326/ab0184
    [32]
    Chankin A V et al 2015 Plasma Phys. Control. Fusion 57 095002 doi: 10.1088/0741-3335/57/9/095002
    [33]
    Aho-Mantila L et al 2011 J. Nucl. Mater. 415 S231 doi: 10.1016/j.jnucmat.2010.10.080
  • Related Articles

    [1]Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
    [2]Min WANG, Qingmei XIAO, Xiaogang WANG, Daoyuan LIU. Numerical studies of the influence of seeding locations on D-SOL plasmas in EAST[J]. Plasma Science and Technology, 2022, 24(1): 015101. DOI: 10.1088/2058-6272/ac320f
    [3]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [4]YUAN Guoliang(袁国梁), YANG Qingwei(杨青巍), YANG Jinwei(杨进蔚), SONG Xianying(宋先瑛), LI Xu(李旭), WU Huajian(吴华剑), WANG Zhiqiang(王志强). Fusion Neutron Flux Detector for the ITER[J]. Plasma Science and Technology, 2014, 16(2): 168-171. DOI: 10.1088/1009-0630/16/2/14
    [5]LEI Mingzhun (雷明准), SONG Yuntao (宋云涛), WANG Songke (王松可), WANG Xianwei (汪献伟). Electromagnetic and Stress Analyses of the ITER Equatorial Thermal Shield[J]. Plasma Science and Technology, 2013, 15(8): 830-833. DOI: 10.1088/1009-0630/15/8/22
    [6]YANG Yu (杨愚), S. MARUYAMA, G. KISS, LI Wei (李伟), JIANG Tao (江涛), LI Bo (李波). Conceptual Design of the ITER Gas Injection System[J]. Plasma Science and Technology, 2013, 15(3): 287-290. DOI: 10.1088/1009-0630/15/3/19
    [7]P Klaywittaphat, T Onjun. Scaling of the density peak with pellet injection in ITER[J]. Plasma Science and Technology, 2012, 14(12): 1035-1040. DOI: 10.1088/1009-0630/14/12/01
    [8]SHENG Zhicai(Cheng-Zhi-Cai-), FU Peng (Fu-Feng-), XU Xiuwei (Hu-Liu-Wei-). Dynamic performance of the ITER reactive power compensation system[J]. Plasma Science and Technology, 2011, 13(5): 637-640.
    [9]KANG Weishan(康伟山), CHEN Jiming(谌继明), WU Jihong(吴继红). Analysis and Optimization of Cooling Channels in ITER Blanket Module[J]. Plasma Science and Technology, 2010, 12(5): 628-631.
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.

Catalog

    Figures(15)  /  Tables(2)

    Article views (144) PDF downloads (82) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return