Advanced Search+
Mingxiang HUANG, Zhengkang REN, Feiyue MAO, Zhoujun YANG, Yuan GAO, Zhichao ZHANG, Shunfan HE, Guoliang LI, Jinrong FAN, Wei TIAN, Nengchao WANG, Zhipeng CHEN, Yonghua DING, Yuan PAN, Zhongyong CHEN. Behavior of multiple modes before and during minor disruption with the external resonant magnetic perturbations on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064013. DOI: 10.1088/2058-6272/ac6da9
Citation: Mingxiang HUANG, Zhengkang REN, Feiyue MAO, Zhoujun YANG, Yuan GAO, Zhichao ZHANG, Shunfan HE, Guoliang LI, Jinrong FAN, Wei TIAN, Nengchao WANG, Zhipeng CHEN, Yonghua DING, Yuan PAN, Zhongyong CHEN. Behavior of multiple modes before and during minor disruption with the external resonant magnetic perturbations on J-TEXT tokamak[J]. Plasma Science and Technology, 2022, 24(6): 064013. DOI: 10.1088/2058-6272/ac6da9

Behavior of multiple modes before and during minor disruption with the external resonant magnetic perturbations on J-TEXT tokamak

  • The behavior of multiple modes before and during minor disruption with the external resonant magnetic perturbations (RMPs) has been studied on a J-TEXT tokamak. The main component of RMPs is m/n=2/1, where m and n are the numbers of the poloidal and toroidal modes, respectively. During the mode-locking caused by RMPs, it is found that before a minor or a major disruption (if there is no minor disruption), strong oscillations in both electron temperature and density occur if the edge safety factor qa > 3. The analysis shows that the oscillations are caused by the m/n=3/1 mode. In addition, using the ECE, Mirnov coils and 2D electron cyclotron emission imaging diagnostic systems, it is found that a thermal collapse occurs on the inner side of the 2/1 magnetic island during the minor disruption, and before the collapse, a 3/2 island increases, after the collapse, the 3/2 island may disappear. Moreover, the study also shows that these 3/1, 2/1 and 3/2 modes play roles in the thermal collapse of disruptions.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return