Advanced Search+
Junwen HE, Bangfa PENG, Nan JIANG, Kefeng SHANG, Na LU, Jie LI, Yan WU. Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor[J]. Plasma Science and Technology, 2022, 24(10): 105402. DOI: 10.1088/2058-6272/ac6e58
Citation: Junwen HE, Bangfa PENG, Nan JIANG, Kefeng SHANG, Na LU, Jie LI, Yan WU. Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor[J]. Plasma Science and Technology, 2022, 24(10): 105402. DOI: 10.1088/2058-6272/ac6e58

Experimental and simulated investigation of microdischarge characteristics in a pin-to-pin dielectric barrier discharge (DBD) reactor

More Information
  • Corresponding author:

    Nan JIANG, E-mail: jiangnan@dlut.edu.cn

  • Received Date: January 18, 2022
  • Revised Date: May 08, 2022
  • Accepted Date: May 09, 2022
  • Available Online: December 07, 2023
  • Published Date: July 26, 2022
  • Both experimental and simulated studies of microdischarge (MD) are carried out in a dielectric barrier discharge with a pin-to-pin gap of 3.5 mm, ignited by a sinusoidal voltage with a peak voltage of 10 kV and a driving frequency of 5 kHz. Statistical results have shown that the probability of the single current pulse in the positive half-period (HP) reaches 73.6% under these conditions. Experimental results show that great luminous intensity is concentrated on the dielectric surface and the tip of the metal electrode. A 1D plasma fluid model is implemented by coupling the species continuity equations, electron energy density equations, Poisson equation, and Helmholtz equations to analyze the MD dynamics on the microscale. The simulated results are in good qualitative agreement with the experimental results. The simulated results show that the MD dynamics can be divided into three phases: the Townsend phase, the streamer propagation phase, and the discharge decay phase. During the streamer propagation phase, the electric field and electron density increase with the streamer propagation from the anode to the cathode, and their maximal values reach 625.48 Td and 2.31 × 1019 m−3, as well as 790.13 Td and 3.58 × 1019 m−3 in the positive and negative HP, respectively. Furthermore, a transient glow-like discharge is detected around the anode during the same period of streamer propagation. The formation of transient glow-like discharge is attributed to electrons drifting back to the anode, which is driven by the residual voltage in the air gap.

  • This research was supported by National Natural Science Foundation of China (Nos. 51877027 and 51877028). This research was also financially supported by the Fundamental Research Funds for the Central Universities (No. DUT20ZD202), the Science and Technology Development Fund of Xinjiang Production and Construction (No. 2019BC009), and the Dalian High-Level Talents Innovation and Entrepreneurship Project (No. 2018RQ28).

  • [1]
    Wu Z L et al 2022 Chem. Eng. J. 427 130983 doi: 10.1016/j.cej.2021.130983
    [2]
    Shang K F et al 2022 Plasma Sci. Technol. 24 015501 doi: 10.1088/2058-6272/ac3379
    [3]
    Zhao W D et al 2021 Plasma Sci. Technol. 23 095506 doi: 10.1088/2058-6272/ac0812
    [4]
    Elkholy A et al 2018 Plasma Sources Sci. Technol. 27 055014 doi: 10.1088/1361-6595/aabf49
    [5]
    Elkholy A et al 2018 Exp. Therm Fluid Sci. 95 18 doi: 10.1016/j.expthermflusci.2018.01.011
    [6]
    Paulauskas R et al 2020 Exp. Therm Fluid Sci. 118 110166 doi: 10.1016/j.expthermflusci.2020.110166
    [7]
    Liu Z J et al 2021 J. Phys. D: Appl. Phys. 54 215203 doi: 10.1088/1361-6463/abe78f
    [8]
    Wang Z F et al 2021 J. Phys. D: Appl. Phys. 54 385202 doi: 10.1088/1361-6463/ac0d72
    [9]
    Gao H T et al 2021 Plasma Sources Sci. Technol. 30 053001 doi: 10.1088/1361-6595/abf51b
    [10]
    Kwan P W et al 2020 IEEE Trans. Ind. Electron. 67 451 doi: 10.1109/TIE.2019.2897514
    [11]
    Zheng H et al 2022 Plasma Sci. Technol. 24 015505 doi: 10.1088/2058-6272/ac35a3
    [12]
    Yang H S et al 2021 Plasma Sci. Technol. 23 115502 doi: 10.1088/2058-6272/ac1395
    [13]
    Kogelschatz U 2002 IEEE Trans. Plasma Sci. 30 1400 doi: 10.1109/TPS.2002.804201
    [14]
    Kogelschatz U 2003 Plasma Chem. Plasma Process. 23 1 doi: 10.1023/A:1022470901385
    [15]
    Akishev Y S et al 2011 Eur. Phys. J. D 61 421 doi: 10.1140/epjd/e2010-10219-7
    [16]
    Lin K M et al 2019 Phys. Plasmas 26 013508 doi: 10.1063/1.5054177
    [17]
    Höft H et al 2020 J. Phys. D: Appl. Phys. 53 025203 doi: 10.1088/1361-6463/ab4944
    [18]
    Jahanbakhsh S, Brüser V and Brandenburg R 2020 Plasma Sources Sci. Technol. 29 015001 doi: 10.1088/1361-6595/ab52e9
    [19]
    Jahanbakhsh S, Brüser V and Brandenburg R 2018 Plasma Sources Sci. Technol. 27 115011 doi: 10.1088/1361-6595/aaec5f
    [20]
    Höft H et al 2013 J. Phys. D: Appl. Phys. 46 095202 doi: 10.1088/0022-3727/46/9/095202
    [21]
    Kettlitz M et al 2013 Plasma Sources Sci. Technol. 22 025003 doi: 10.1088/0963-0252/22/2/025003
    [22]
    Hoder T et al 2012 Phys. Plasmas 19 070701 doi: 10.1063/1.4736716
    [23]
    Jiang S et al 2021 Plasma Sci. Technol. 23 125404 doi: 10.1088/2058-6272/ac2b11
    [24]
    Nijdam S, Teunissen J and Ebert U 2020 Plasma Sources Sci. Technol. 29 103001 doi: 10.1088/1361-6595/abaa05
    [25]
    Wagner H E, Yurgelenas Y V and Brandenburg R 2005 Plasma Phys. Contr. Fusion 47 B641 doi: 10.1088/0741-3335/47/12B/S47
    [26]
    Yurgelenas Y V and Wagner H E 2006 J. Phys. D: Appl. Phys. 39 4031 doi: 10.1088/0022-3727/39/18/015
    [27]
    Akishev Y et al 2011 Plasma Sources Sci. Technol. 20 024005 doi: 10.1088/0963-0252/20/2/024005
    [28]
    Teunissen J and Ebert U 2017 J. Phys. D: Appl. Phys. 50 474001 doi: 10.1088/1361-6463/aa8faf
    [29]
    Niknezhad M et al 2021 Plasma Sources Sci. Technol. 30 045012 doi: 10.1088/1361-6595/abefa6
    [30]
    Wang W Z, Butterworth T and Bogaerts A 2021 J. Phys. D: Appl. Phys. 54 214004 doi: 10.1088/1361-6463/abe8ff
    [31]
    Cheng H et al 2020 J. Phys. D: Appl. Phys. 53 144001 doi: 10.1088/1361-6463/ab651e
    [32]
    Zhu Y F et al 2020 J. Phys. D: Appl. Phys. 53 145205 doi: 10.1088/1361-6463/ab6517
    [33]
    Lin K M et al 2019 Plasma Sources Sci. Technol. 28 115014 doi: 10.1088/1361-6595/ab515c
    [34]
    Tejero-del-Caz A et al 2019 Plasma Sources Sci. Technol. 28 043001 doi: 10.1088/1361-6595/ab0537
    [35]
    Raizer Y P 1991 Gas Discharge Physics (Berlin: Springer)
    [36]
    Kossyi I A et al 1992 Plasma Sources Sci. Technol. 1 207 doi: 10.1088/0963-0252/1/3/011
    [37]
    Sakiyama Y et al 2012 J. Phys. D: Appl. Phys. 45 425201 doi: 10.1088/0022-3727/45/42/425201
    [38]
    Poggie J et al 2013 Plasma Sources Sci. Technol. 22 015001 doi: 10.1088/0963-0252/22/1/015001
    [39]
    Luque A et al 2007 Appl. Phys. Lett. 90 081501 doi: 10.1063/1.2435934
    [40]
    Wang W Z et al 2018 Chem. Eng. J. 334 2467 doi: 10.1016/j.cej.2017.11.139
    [41]
    Zhu Y F and Starikovskaia S 2018 Plasma Sources Sci. Technol. 27 124007 doi: 10.1088/1361-6595/aaf40d
    [42]
    Bagheri B et al 2018 Plasma Sources Sci. Technol. 27 095002 doi: 10.1088/1361-6595/aad768
    [43]
    Naidis G V 2006 Plasma Sources Sci. Technol. 15 253 doi: 10.1088/0963-0252/15/2/010
    [44]
    Bourdon A et al 2007 Plasma Sources Sci. Technol. 16 656 doi: 10.1088/0963-0252/16/3/026
    [45]
    Zhao Z H et al 2021 Plasma Sci. Technol. 23 075403 doi: 10.1088/2058-6272/abfd89
    [46]
    Jahanbakhsh S, Hoder T and Brandenburg R 2019 J. Appl. Phys. 126 193305 doi: 10.1063/1.5124363
    [47]
    Montijn C and Ebert U 2006 J. Phys. D: Appl. Phys. 39 2979 doi: 10.1088/0022-3727/39/14/017
    [48]
    Kulikovsky A A 1997 J. Phys. D: Appl. Phys. 30 441 doi: 10.1088/0022-3727/30/3/017
    [49]
    Wang D Y and Namihira T 2020 Plasma Sources Sci. Technol. 29 023001 doi: 10.1088/1361-6595/ab5bf6
    [50]
    Naidis G V 2009 Phys. Rev. E 79 057401 doi: 10.1103/PhysRevE.79.057401
    [51]
    Wu Y et al 2015 Plasma Process. Polym. 12 642 doi: 10.1002/ppap.201400175
  • Related Articles

    [1]N AHMAD, A A ABID, Y AL-HADEETHI, M N S QURESHI, Saqib REHMAN. The effect of positive/negative ion on the dust grain charging process in a Vasyliunas-Cairns (VC)-distributed dusty plasma system[J]. Plasma Science and Technology, 2019, 21(6): 65001-065001. DOI: 10.1088/2058-6272/ab0333
    [2]Monzurul K AHMED, Om P SAH. Solitary kinetic Alfvén waves in dense plasmas with relativistic degenerate electrons and positrons[J]. Plasma Science and Technology, 2019, 21(4): 45301-045301. DOI: 10.1088/2058-6272/aaf20f
    [3]Nimardeep KAUR, Kuldeep SINGH, Yashika GHAI, N S SAINI. Nonplanar dust acoustic solitary and rogue waves in an ion beam plasma with superthermal electrons and ions[J]. Plasma Science and Technology, 2018, 20(7): 74009-074009. DOI: 10.1088/2058-6272/aac37a
    [4]Yashika GHAI, Nimardeep KAUR, Kuldeep SINGH, N S SAINI. Dust acoustic shock waves in magnetized dusty plasma[J]. Plasma Science and Technology, 2018, 20(7): 74005-074005. DOI: 10.1088/2058-6272/aab491
    [5]Ranjit K KALITA, Manoj K DEKA, Apul N DEV, Jnanjyoti SARMA. Characteristics of dust acoustic waves in dissipative dusty plasma in the presence of trapped electrons[J]. Plasma Science and Technology, 2017, 19(5): 55303-055303. DOI: 10.1088/2058-6272/aa5ff1
    [6]LIU Zhiwei (刘智惟), BAO Weimin (包为民), LI Xiaoping (李小平), LIU Donglin (刘东林), ZHOU Hui (周辉). Influence of Plasma Pressure Fluctuation on RF Wave Propagation[J]. Plasma Science and Technology, 2016, 18(2): 131-137. DOI: 10.1088/1009-0630/18/2/06
    [7]ZHU Zhenni(朱珍妮), WU Zhengwei(吴征威), LI Chunhua(李春华), YANG Weihong(杨维纮). Electron Acoustic Solitary Waves in Magnetized Quantum Plasma with Relativistic Degenerated Electrons[J]. Plasma Science and Technology, 2014, 16(11): 995-999. DOI: 10.1088/1009-0630/16/11/01
    [8]S. Ahmadi ABRISHAMI, M. Nouri KADIJANI. Nonlinear Dust Acoustic Waves in a Magnetized Dusty Plasma with Trapped and Superthermal Electrons[J]. Plasma Science and Technology, 2014, 16(6): 545-551. DOI: 10.1088/1009-0630/16/6/01
    [9]ZHANG Liping(张丽萍), SU Junyan(苏俊燕), LI Yanlong(李延龙). Propagation of Nonlinear Solitary Waves in Nonuniform Dusty Plasmas with Two-Ion Temperature[J]. Plasma Science and Technology, 2014, 16(3): 177-181. DOI: 10.1088/1009-0630/16/3/01
    [10]Yukihiro TOMITA, Gakushi KAWAMURA, HUANG Zhihui, PAN Yudong, YAN Longwen. Dust Charging and Dynamics in Tokamaks[J]. Plasma Science and Technology, 2011, 13(1): 11-14.

Catalog

    Figures(9)  /  Tables(2)

    Article views (146) PDF downloads (482) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return