Citation: | Renchuan HE, Xiaoyi YANG, Chijie XIAO, Xiaogang WANG, Tianchao XU, Zhibin GUO, Yue GE, Xiuming YU, Zuyu ZHANG, Rui KE, Ruixin YUAN. Experimental observation of the transport induced by ion Bernstein waves near the separatrix of magnetic nulls[J]. Plasma Science and Technology, 2022, 24(11): 115001. DOI: 10.1088/2058-6272/ac770b |
The waves in a magnetic null could play important roles during 3D magnetic reconnection. Some preliminary clues in this paper show that the ion Bernstein wave (IBW) may be closely related to transport process in magnetic null region. The magnetic null configuration experiment reported here is set up in a linear helicon plasma device, Peking University plasma test device (PPT). The wave modes with frequencies between the first and third harmonics of local ion cyclotron frequency (ωci) are observed in the separatrix of magnetic null, which are identified as the IBW based on the dispersion relation. Further analysis shows that IBW could drive substantial particle flux across the magnetic separatrix. The theoretical radial particle flux driven by IBW and the measured parallel flow in PPT device are almost on the same order, which shows that IBW may play an important role during 3D reconnection process.
This work was supported by National Natural Science Foundation of China (No. 11975038) and the National MCF Energy R&D Program of China (Nos. 2017YFE0300601 and 2018YFE0311400).
[1] |
Yamada M, Kulsrud R and Ji H T 2010 Rev. Mod. Phys. 82 603 doi: 10.1103/RevModPhys.82.603
|
[2] |
Ji H T and Daughton W 2011 Phys. Plasmas 18 111207 doi: 10.1063/1.3647505
|
[3] |
Rogers B N et al 2001 Phys. Rev. Lett. 87 195004 doi: 10.1103/PhysRevLett.87.195004
|
[4] |
Haw M A, Seo B and Bellan P M 2019 Geophys. Res. Lett. 46 7105 doi: 10.1029/2019GL082621
|
[5] |
Wang Y S, Kulsrud R and Ji H T 2008 Phys. Plasmas 15 122105 doi: 10.1063/1.3035907
|
[6] |
Kulsrud R et al 2005 Phys. Plasmas 12 082301 doi: 10.1063/1.1949225
|
[7] |
Narita Y et al 2016 Ann. Geophys. 34 85 doi: 10.5194/angeo-34-85-2016
|
[8] |
Parnell C E et al 2010 Proc. Int. Astron. Union 6 227 doi: 10.1017/S1743921311017650
|
[9] |
Boedo J A 2009 J. Nucl. Mater. 390-391 29 doi: 10.1016/j.jnucmat.2009.01.040
|
[10] |
Bernstein I B 1958 Phys. Rev. 109 10 doi: 10.1103/PhysRev.109.10
|
[11] |
Xiao C J et al 2016 Rev. Sci. Instrum. 87 11D610 doi: 10.1063/1.4961282
|
[12] |
Xu T C et al 2020 Nucl. Fusion 60 016029 doi: 10.1088/1741-4326/ab53a2
|
[13] |
Yan Z et al 2008 Phys. Plasmas 15 092309 doi: 10.1063/1.2985836
|
[14] |
Hutchinson I H 2002 Principles of Plasma Diagnostics 2nd edn (Cambridge: Cambridge University Press)
|
[15] |
Thakur S C et al 2012 Rev. Sci. Instrum. 83 10D708 doi: 10.1063/1.4731005
|
[16] |
Fujisawa A 2010 Plasma Fusion Res. 5 046 doi: 10.1585/pfr.5.046
|
[17] |
Beall J M, Kim Y C and Powers E J 1982 J. Appl. Phys. 53 3933 doi: 10.1063/1.331279
|
[18] |
Wurden G A, Ono M and Wong K L 1982 Phys. Rev. A 26 2297 doi: 10.1103/PhysRevA.26.2297
|
[19] |
Fredricks R W 1968 J. Plasma Phys. 2 365 doi: 10.1017/S0022377800003895
|
[20] |
Podesta J J 2012 J. Geophys. Res. Space Phys. 117 A07101
|
[21] |
Morales G J, Antani S N and Fried B D 1985 Phys. Fluids 28 3302 doi: 10.1063/1.865328
|
[22] |
Gary S P, Liu K J and Winske D 2011 J. Geophys. Res. Space Phys. 116 A08215 doi: 10.1029/2011JA016543
|
[23] |
Thakur S C et al 2014 Plasma Sources Sci. Technol. 23 044006 doi: 10.1088/0963-0252/23/4/044006
|
[1] | Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51 |
[2] | Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814 |
[3] | Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf |
[4] | Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9 |
[5] | Saravanan ARUMUGAM, Prince ALEX, Suraj Kumar SINHA. Feedback model of secondary electron emission in DC gas discharge plasmas[J]. Plasma Science and Technology, 2018, 20(2): 25404-025404. DOI: 10.1088/2058-6272/aa8e3f |
[6] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[7] | ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12 |
[8] | LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02 |
[9] | GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05 |
[10] | WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05 |