Citation: | Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61 |
This work investigates the pulsed breakdown processes and mechanisms of self-triggered pre-ionized switches with a four-electrode structure in nitrogen through intensified charge coupled device photographs. The diameter of the trigger plane hole mainly determines the switch's electric field distribution. Two configurations with minimum and maximum trigger plane holes are adopted for comparison. In the switch with a minimum trigger plane hole, the maximum electric field distributes at the surfaces of the main electrodes. Although charged particles in the triggering spark channel cannot drift out, homogeneous discharges can be stimulated from both the cathode and anode surfaces through ultraviolet illumination. Two sub-gaps are likely to break down simultaneously. In the switch with a maximum trigger plane hole, the maximum electric field locates near the trigger electrodes. Discharges in both sub-gaps initiate from the trigger electrodes in the form of a positive or negative streamer. Due to the lower breakdown voltage and electric field threshold for discharge initiation, the cathode side sub-gap breaks down first. The analysis of two extreme examples can be referenced in the future design and improvement of self-triggered four-electrode switches with different trigger electrode structures.
[1] |
Gilman C et al 1999 Design and performance of the FEMP-2000: a fast risetime, 2 MV EMP pulser IEEE 12th Int. Pulsed Power Conf. on Digest of Technical Papers (Monterey) (IEEE) (https://doi.org/10.1109/PPC.1999.823800)
|
[2] |
Bailey V et al 2010 IEEE Trans. Plasma Sci. 38 2554 doi: 10.1109/TPS.2010.2065245
|
[3] |
Deng J J et al 2016 Matter Radiat. Extremes 1 48 doi: 10.1016/j.mre.2016.01.004
|
[4] |
Maenchen J et al 2007 Fundamental Science Investigations to Develop a 6-MV Laser Triggered Gas Switch for ZR: First Annual Report SAND2007-0217 Sandia National Laboratories
|
[5] |
Kushner M J, Milroy R D and Kimura W D 1985 J. Appl. Phys. 58 2988 doi: 10.1063/1.335848
|
[6] |
Guenther A H and Bettis J R 1978 J. Phys. D: Appl. Phys. 11 1577 doi: 10.1088/0022-3727/11/12/001
|
[7] |
Williams P and Peterkin F E 1989 J. Appl. Phys. 66 4163 doi: 10.1063/1.344001
|
[8] |
Peterkin F E and Williams P F 1988 Appl. Phys. Lett. 53 182 doi: 10.1063/1.100168
|
[9] |
Broadbent T E and Shlash A H A 1963 Br. J. Appl. Phys. 14 687 doi: 10.1088/0508-3443/14/10/321
|
[10] |
Yin J H et al 2016 IEEE Trans. Plasma Sci. 44 2045 doi: 10.1109/TPS.2016.2600479
|
[11] |
McPhee A J, Somerville I C and MacGregor S J 1995 The design and testing of an extended lifetime, high voltage, low jitter trigatron for repetitive operation Proc. of the IEEE 10th Int. Pulsed Power Conf. on Digest of Technical Papers (Albuquerque) (IEEE) (https://doi.org/10.1109/PPC.1995.596485)
|
[12] |
Hutsel B et al 2007 Characterization of runtime and jitter on a laser triggered spark gap switch Proc. IEEE 34th Int. Conf. on Plasma Science (Albuquerque) (IEEE) (https://doi.org/10.1109/PPPS.2007.4345497)
|
[13] |
Hegeler F et al 2013 IEEE Trans. Dielectr. Electr. Insul. 20 1168 doi: 10.1109/TDEI.2013.6571432
|
[14] |
Woodworth J R, Adams R G and Frost C A 1982 IEEE Trans. Plasma Sci. 10 257 doi: 10.1109/TPS.1982.4316185
|
[15] |
Naff J T 2009 Spark gaps for EMP and SREMP pulsers Proc. of 2009 IEEE Pulsed Power Conf. (Washington) (IEEE) (https://doi.org/10.1109/PPC.2009.5386295)
|
[16] |
Lehr J and Ron P 2017 Foundations of Pulsed Power TechnologyHoboken, NJWiley
|
[17] |
Song F L et al 2019 IEEE Trans. Plasma Sci. 47 4105 doi: 10.1109/TPS.2019.2926617
|
[18] |
Jiang H Y et al 2019 IEEE Trans. Plasma Sci. 47 4114 doi: 10.1109/TPS.2019.2926853
|
[19] |
Li J N et al 2014 Phys. Plasmas 21 033509 doi: 10.1063/1.4869334
|
[20] |
Li J N et al 2015 IEEE Trans. Plasma Sci. 43 3293 doi: 10.1109/TPS.2015.2457955
|
[21] |
Wang T C et al 2021 Plasma Sci. Technol. 23 115507 doi: 10.1088/2058-6272/ac2358
|
[22] |
Wang T C et al 2021 Plasma Sci. Technol. 23 115508 doi: 10.1088/2058-6272/ac2420
|
[23] |
Wang T C et al 2021 IEEE Trans. Plasma Sci. 49 4034 doi: 10.1109/TPS.2021.3127946
|
[24] |
Li J N et al 2013 IEEE Trans. Plasma Sci. 41 360 doi: 10.1109/TPS.2012.2237418
|
[25] |
Shi W, Qiu Y C and Zhang Q G 2006 Foundations of High Voltage Engineering (Beijing: China Machine Press) (in Chinese)
|
[26] |
Nijdam S, Teunissen J and Ebert U 2020 Plasma Sources Sci. Technol. 29 103001 doi: 10.1088/1361-6595/abaa05
|
[27] |
Bradley L P 1972 J. Appl. Phys. 43 886 doi: 10.1063/1.1661299
|
[1] | Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420 |
[2] | Tianchi WANG (王天驰), Haiyang WANG (王海洋), Wei CHEN (陈伟), Yingchao DU (杜应超), Linshen XIE (谢霖燊), Tao HUANG (黄涛), Zhiqiang CHEN (陈志强), Junna LI (李俊娜), Fan GUO (郭帆), Gang WU (吴刚). A calculation model for breakdown time delay and jitter of gas switches under hundred-nanosecond pulses and its application in a self-triggered pre-ionized switch[J]. Plasma Science and Technology, 2021, 23(11): 115507. DOI: 10.1088/2058-6272/ac2358 |
[3] | Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c |
[4] | Rongxiao ZHAI (翟戎骁), Tao HUANG (黄涛), Peitian CONG (丛培天), Weixi LUO (罗维熙), Zhiguo WANG (王志国), Tianyang ZHANG (张天洋), Jiahui YIN (尹佳辉). Comparative study on breakdown characteristics of trigger gap and overvoltage gap in a gas pressurized closing switch[J]. Plasma Science and Technology, 2019, 21(1): 15505-015505. DOI: 10.1088/2058-6272/aae432 |
[5] | Dawei GUO (郭大伟), Mousen CHENG (程谋森), Xiaokang LI (李小康), Bixuan CHE (车碧轩), Xiong YANG (杨雄), Moge WANG (王墨戈). Measurement of transient neutral gas puff pressure in the NUDT_IPPTx by a fast ionization gauge[J]. Plasma Science and Technology, 2018, 20(12): 125506. DOI: 10.1088/2058-6272/aade84 |
[6] | Ming SUN (孙明), Zhan TAO (陶瞻), Zhipeng ZHU (朱志鹏), Dong WANG (王东), Wenjun PAN (潘文军). Spectroscopic diagnosis of plasma in atmospheric pressure negative pulsed gas-liquid discharge with nozzle-cylinder electrode[J]. Plasma Science and Technology, 2018, 20(5): 54005-054005. DOI: 10.1088/2058-6272/aab601 |
[7] | JIAO Zhihong (焦志宏), WANG Guoli (王国利), ZHOU Xiaoxin (周效信), WU Chaohui (吴朝辉), ZUO Yanlei (左言磊), ZENG Xiaoming (曾小明), ZHOU Kainan (周凯南), SU Jingqin (粟敬钦). Study on the Two-Dimensional Density Distribution for Gas Plasmas Driven by Laser Pulse[J]. Plasma Science and Technology, 2016, 18(12): 1169-1174. DOI: 10.1088/1009-0630/18/12/05 |
[8] | DUAN Jianjin (段剑金), HU Jue (胡觉), ZHANG Chao (张超), WEN Yuanbin (温元斌), MENG Yuedong (孟月东), ZHANG Chengxu (张呈旭). Plasma Discharge Process in a Pulsed Diaphragm Discharge System[J]. Plasma Science and Technology, 2014, 16(12): 1106-1110. DOI: 10.1088/1009-0630/16/12/05 |
[9] | CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01 |
[10] | WENG Ming (翁明), XU Weijun (徐伟军). The Influence of Electrode Surface Mercury Film Deformation on the Breakdown Voltage of a Sub-Nanosecond Pulse Discharge Tube[J]. Plasma Science and Technology, 2012, 14(11): 1024-1029. DOI: 10.1088/1009-0630/14/11/12 |