Citation: | Na LI, Edward HAREFA, Weidong ZHOU. Nanosecond laser preheating effect on ablation morphology and plasma emission in collinear dual-pulse laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2022, 24(11): 115507. DOI: 10.1088/2058-6272/ac8039 |
Focus-offset collinear dual-pulse laser-induced breakdown spectroscopy is designed and used to investigate the laser ablation and spectral intensity with an aluminum alloy sample. The laser crater morphologies and ablation volumes were measured. An inter-pulse time delay dependent ablation efficiency on a nanosecond laser-heated sample was observed, which was similar to the trend of spectral intensity versus inter-pulse time delay in the delay time less than 3 μs. Based on the observation, the nanosecond pulse laser preheating effect on subsequent second laser ablation and signal enhancement is discussed, which will be helpful for understanding the ablation and signal enhancement mechanism in the standard collinear DP-LIBS technique.
This study was supported by National Natural Science Foundation of China (No. 61975186).
[1] |
Anabitarte F, Cobo A and Lopez-Higuera J M 2012 ISRN Spectrosc. 2012 285240 doi: 10.5402/2012/285240
|
[2] |
Wang Z et al 2021 TrAC, Trends Anal. Chem. 143 116385 doi: 10.1016/j.trac.2021.116385
|
[3] |
Tarik M et al 2009 Spectrochim. Acta Part B: At. Spectrosc. 64 262 doi: 10.1016/j.sab.2009.02.009
|
[4] |
Jiang Y H, Li R H and Chen Y Q 2019 J. Anal. At. Spectrom. 34 1838 doi: 10.1039/C9JA00169G
|
[5] |
Zhou W D, Guo Y H and Zhang R R 2020 Front. Phys. 15 52201 doi: 10.1007/s11467-020-0969-1
|
[6] |
Hou Z Y et al 2013 Opt. Express 21 15974 doi: 10.1364/OE.21.015974
|
[7] |
Su X J, Zhou W D and Qian H G 2014 J. Anal. At. Spectrom. 29 2356 doi: 10.1039/C4JA00296B
|
[8] |
Guo L B et al 2011 Opt. Express 19 14067 doi: 10.1364/OE.19.014067
|
[9] |
Liu Y, Baudelet M and Richardson M 2010 J. Anal. At. Spectrom. 25 1316 doi: 10.1039/c003304a
|
[10] |
Viljanen J, Sun Z W and Alwahabi Z T 2016 Spectrochim. Acta Part B: At. Spectrosc. 118 29 doi: 10.1016/j.sab.2016.02.002
|
[11] |
Sanginés R, Sobral H and Alvarez-Zauco E 2012 Appl. Phys. B 108 867 doi: 10.1007/s00340-012-5130-6
|
[12] |
Tavassoli S H and Gragossian A 2009 Opt. Laser Technol. 41 481 doi: 10.1016/j.optlastec.2008.07.010
|
[13] |
Bogaerts A, Chen Z Y and Autrique D 2008 Spectrochim. Acta Part B: At. Spectrosc. 63 746 doi: 10.1016/j.sab.2008.04.005
|
[14] |
Burakov V S et al 2009 Spectrochim. Acta Part B: At. Spectrosc. 64 141 doi: 10.1016/j.sab.2008.11.005
|
[15] |
Cui M C et al 2018 Spectrochim. Acta Part B: At. Spectrosc. 142 14 doi: 10.1016/j.sab.2018.02.002
|
[16] |
Autrique D et al 2013 Appl. J. Phys. 114 023301 doi: 10.1063/1.4812577
|
[17] |
Noll R et al 2004 J. Anal. At. Spectrom. 19 419 doi: 10.1039/b315718k
|
[18] |
Capitelli M et al 2004 Spectrochim. Acta Part B: At. Spectrosc. 59 271 doi: 10.1016/j.sab.2003.12.017
|
[19] |
Gornushkin I B et al 2004 Spectrochim. Acta Part B: At. Spectrosc. 59 401 doi: 10.1016/j.sab.2003.12.023
|
[20] |
Benedetti P A et al 2005 Spectrochim. Acta Part B: At. Spectrosc. 60 1392 doi: 10.1016/j.sab.2005.08.007
|
[21] |
Lednev V N et al 2016 Spectrochim. Acta Part B: At. Spectrosc. 124 47 doi: 10.1016/j.sab.2016.08.020
|
[22] |
Freeman J R et al 2014 Spectrochim. Acta Part B: At. Spectrosc. 102 36 doi: 10.1016/j.sab.2014.10.008
|
[23] |
Scaffidi J, Angel S M and Cremers D A 2006 Anal. Chem. 78 24 doi: 10.1021/ac069342z
|
[24] |
Chen F F, Su X J and Zhou W D 2015 Front. Phys. 10 104207 doi: 10.1007/s11467-015-0500-2
|
[25] |
De Giacomo A et al 2008 Spectrochim. Acta Part B: At. Spectrosc. 63 805 doi: 10.1016/j.sab.2008.05.002
|
[26] |
Babushok V I et al 2006 Spectrochim. Acta Part B: At. Spectrosc. 61 999 doi: 10.1016/j.sab.2006.09.003
|
[27] |
Yu Y L et al 2014 Plasma Sci. Technol. 16 683 doi: 10.1088/1009-0630/16/7/09
|
[28] |
Yu Y L, Zhou W D and Su X J 2014 Opt. Commun. 333 62 doi: 10.1016/j.optcom.2014.07.053
|
[29] |
Ho J R, Grigoropoulos C P and Humphrey J A C 1995 Appl. J. Phys. 78 4696 doi: 10.1063/1.359817
|
[30] |
Shannon M A et al 1995 Anal. Chem. 67 4522 doi: 10.1021/ac00120a015
|
[31] |
Iskakov A B et al 2000 Phys. Rev. E 61 842 doi: 10.1103/PhysRevE.61.842
|
[32] |
Corsi M et al 2004 Spectrochim. Acta Part B: At. Spectrosc. 59 723 doi: 10.1016/j.sab.2004.02.001
|
[33] |
Russo R E et al 2013 Anal. Chem. 85 6162 doi: 10.1021/ac4005327
|
[1] | Xiaoxi DUAN (段晓溪), Benqiong LIU (刘本琼), Huige ZHANG (张惠鸽), Ben LI (李犇), Jiting OUYANG (欧阳吉庭). Various patterns in dielectric barrier glow discharges simulated by a dynamic model[J]. Plasma Science and Technology, 2019, 21(8): 85401-085401. DOI: 10.1088/2058-6272/ab0d51 |
[2] | Simin ZHOU (周思敏), Xiutao HUANG (黄修涛), Minghai LIU (刘明海). Electrical model and experimental analysis of a double spiral structure surface dielectric barrier discharge[J]. Plasma Science and Technology, 2019, 21(6): 65401-065401. DOI: 10.1088/2058-6272/ab0814 |
[3] | Mohamed MOSTAFAOUI, Djilali BENYOUCEF. Electrical model parameters identification of radiofrequency discharge in argon through 1D3V/PIC-MC model[J]. Plasma Science and Technology, 2018, 20(9): 95401-095401. DOI: 10.1088/2058-6272/aac3cf |
[4] | Chenchen WU (吴辰宸), Xinfeng SUN (孙新锋), Zuo GU (顾左), Yanhui JIA (贾艳辉). Numerical research of a 2D axial symmetry hybrid model for the radio-frequency ion thruster[J]. Plasma Science and Technology, 2018, 20(4): 45502-045502. DOI: 10.1088/2058-6272/aaa8d9 |
[5] | Saravanan ARUMUGAM, Prince ALEX, Suraj Kumar SINHA. Feedback model of secondary electron emission in DC gas discharge plasmas[J]. Plasma Science and Technology, 2018, 20(2): 25404-025404. DOI: 10.1088/2058-6272/aa8e3f |
[6] | Xiang HE (何湘), Chong LIU (刘冲), Yachun ZHANG (张亚春), Jianping CHEN (陈建平), Yudong CHEN (陈玉东), Xiaojun ZENG (曾小军), Bingyan CHEN (陈秉岩), Jiaxin PANG (庞佳鑫), Yibing WANG (王一兵). Diagnostic of capacitively coupled radio frequency plasma from electrical discharge characteristics: comparison with optical emission spectroscopy and fluid model simulation[J]. Plasma Science and Technology, 2018, 20(2): 24005-024005. DOI: 10.1088/2058-6272/aa9a31 |
[7] | ZHANG Junmin (张俊民 ), CHI Chengbin (迟程缤), GUAN Yonggang (关永刚), LIU Weidong (刘卫东), WU Junhui (吴军辉). Simulation of Arc Rotation and Its Effects on Pressure of Expansion Volume in an Auto-Expansion SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 287-291. DOI: 10.1088/1009-0630/18/3/12 |
[8] | LIN Xin (林莘), WANG Feiming (王飞鸣), XU Jianyuan (徐建源), XIA Yalong (夏亚龙), LIU Weidong (刘卫东). Study on the Mathematical Model of Dielectric Recovery Characteristics in High Voltage SF6 Circuit Breaker[J]. Plasma Science and Technology, 2016, 18(3): 223-229. DOI: 10.1088/1009-0630/18/3/02 |
[9] | GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05 |
[10] | WANG Yan(王燕), LIU Xiang-Mei(刘相梅), SONG Yuan-Hong(宋远红), WANG You-Nian(王友年). e-dimensional fluid model of pulse modulated radio-frequency SiH4/N2/O2 discharge[J]. Plasma Science and Technology, 2012, 14(2): 107-110. DOI: 10.1088/1009-0630/14/2/05 |