Advanced Search+
Andrey SHASHKOV, Alexander LOVTSOV, Dmitri TOMILIN, Dmitrii KRAVCHENKO. Numerical study of viscosity and heat flux role in heavy species dynamics in Hall thruster discharge[J]. Plasma Science and Technology, 2023, 25(1): 015511. DOI: 10.1088/2058-6272/ac82e0
Citation: Andrey SHASHKOV, Alexander LOVTSOV, Dmitri TOMILIN, Dmitrii KRAVCHENKO. Numerical study of viscosity and heat flux role in heavy species dynamics in Hall thruster discharge[J]. Plasma Science and Technology, 2023, 25(1): 015511. DOI: 10.1088/2058-6272/ac82e0

Numerical study of viscosity and heat flux role in heavy species dynamics in Hall thruster discharge

More Information
  • Author Bio:

    Andrey SHASHKOV, E-mail: shashkov@kerc.msk.ru

  • Received Date: March 21, 2022
  • Revised Date: July 17, 2022
  • Accepted Date: July 19, 2022
  • Available Online: December 05, 2023
  • Published Date: November 29, 2022
  • A two- and three-dimensional velocity space axisymmetric hybrid-PIC model of Hall thruster discharge called Hybrid2D has been developed. The particle-in-cell (PIC) method was used for neutrals and ions (heavy species), and fluid dynamics on a magnetic field-aligned (MFA) mesh was used for electrons. A time-saving method for heavy species moment interpolation on a MFA mesh was developed. The method comprises using regular rectangle and irregular triangle meshes, connected to each other on a pre-processing stage. The electron fluid model takes into account neither inertia terms nor viscous terms and includes an electron temperature equation with a heat flux term. The developed model was used to calculate all heavy species moments up to the third one in a stationary case. The analysis of the viscosity and the heat flux impact on the force and energy balance has shown that for the calculated geometry of the Hall thruster, the viscosity and the heat flux terms have the same magnitude as the other terms and could not be omitted. Also, it was shown that the heat flux is not proportional to the temperature gradient and, consequently, the highest moments should be calculated to close the neutral fluid equation system. At the same time, ions can only be modeled as a cold non-viscous fluid when the sole aim of modeling is the calculation of the operating parameters or distribution of the local parameters along the centerline of the discharge channel. This is because the magnitude of the viscosity and the temperature gradient terms are negligible at the centerline. However, when a simulation's focus is either on the radial divergence of the plume or on magnetic pole erosion, three components of the ion temperature should be taken into consideration. The non-diagonal terms of ion pressure tensor have a lower impact than the diagonal terms. According to the study, a zero heat flux condition could be used to close the ion equation system in calculated geometry.

  • [1]
    Boeuf J P and Garrigues L 1998 J. Appl. Phys. 84 3541 doi: 10.1063/1.368529
    [2]
    Askenazy J et al 1999 Plasma Phys. Control. Fusion 41 A357 doi: 10.1088/0741-3335/41/3A/029
    [3]
    Morozov A I and Savelyev V V 2000 Plasma Phys. Rep. 26 875 doi: 10.1134/1.1316827
    [4]
    Ahedo E, Gallardo J M and Martí nez-Sánchez M 2002 Phys. Plasmas 9 4061 doi: 10.1063/1.1499496
    [5]
    Roy S and Pandey B P 2002 Phys. Plasmas 9 4052 doi: 10.1063/1.1498261
    [6]
    Ahedo E, Gallardo J M and Martí nez-Sánchez M 2003 Phys. Plasmas 10 3397 doi: 10.1063/1.1584432
    [7]
    Barral S et al 2003 Phys. Plasmas 10 4137 doi: 10.1063/1.1611881
    [8]
    Hara K, Boyd I D and Kolobov V I 2012 Phys. Plasmas 19 113508 doi: 10.1063/1.4768430
    [9]
    Shashkov A, Lovtsov A and Tomilin D 2017 Phys. Plasmas 24 043501 doi: 10.1063/1.4979190
    [10]
    Keidar M, Boyd I D and Beilis I I 2001 Phys. Plasmas 8 5315 doi: 10.1063/1.1421370
    [11]
    Ahedo E 2002 Phys. Plasmas 9 4340 doi: 10.1063/1.1503798
    [12]
    Ducrocq A et al 2006 Phys. Plasmas 13 102111 doi: 10.1063/1.2359718
    [13]
    Boeuf J P 2014 Front. Phys. 2 74 doi: 10.3389/fphy.2014.00074
    [14]
    Lafleur T, Baalrud S D and Chabert P 2016 Phys. Plasmas 23 053502 doi: 10.1063/1.4948495
    [15]
    Katz I, Chaplin H and Lopez Ortega A 2018 Phys. Plasmas 25 123504 doi: 10.1063/1.5054009
    [16]
    Fife J M 1998 Hybrid-PIC modeling and electrostatic probe survey of hall thrusters PhD Thesis Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, USA
    [17]
    Hagelaar G J M et al 2002 J. Appl. Phys. 91 5592 doi: 10.1063/1.1465125
    [18]
    Koo J W and Boyd I A 2004 Comput. Phys. Commun. 164 442 doi: 10.1016/j.cpc.2004.06.058
    [19]
    Keidar M, Boyd I D and Beilis I I 2004 Phys. Plasmas 11 1715 doi: 10.1063/1.1668642
    [20]
    Parra F I et al 2006 J. Appl. Phys. 100 023304 doi: 10.1063/1.2219165
    [21]
    Garrigues L et al 2006 J. Appl. Phys. 100 123301 doi: 10.1063/1.2401773
    [22]
    Mikellides I G and Katz I 2012 Phys. Rev. E 86 046703 doi: 10.1103/PhysRevE.86.046703
    [23]
    Andreussi T et al 2018 Plasma Phys. Control. Fusion 60 014015 doi: 10.1088/1361-6587/aa8c4d
    [24]
    Joncquieres V et al 2018 A 10-moment fluid numerical solver of plasma with sheaths in a Hall Effect Thruster 54th Joint AIAA/ASME/SAE/ASEE Propulsion Conf. and Exhibit (Cincinnati) (AIAA) 2018-4905
    [25]
    Reza M et al 2017 A model for turbulence-induced electron transport in hall thrusters 35th International Electric Propulsion Conference (Atlanta) IEPC-2017-367
    [26]
    Irishkov S V, Gorshkov O A and Shagayda A A 2005 Fully kinetic modeling of low-power hall thrusters 29th Int. Electric Propulsion Conf. (Florence) (IEPC) 2005-35
    [27]
    Taccogna F et al 2005 Phys. Plasmas 12 043502 doi: 10.1063/1.1862630
    [28]
    Liu H et al 2008 Contrib. Plasma Phys. 48 603 doi: 10.1002/ctpp.200810094
    [29]
    Matyash K et al 2010 IEEE Trans. Plasma Sci. 38 2274 doi: 10.1109/TPS.2010.2056936
    [30]
    Yu D R et al 2011 Contrib. Plasma Phys. 51 955 doi: 10.1002/ctpp.201100036
    [31]
    Szabo J et al 2014 J. Propuls. Power 30 197 doi: 10.2514/1.B34774
    [32]
    Cho S, Komurasaki K and Arakawa Y 2013 Phys. Plasmas 20 063501 doi: 10.1063/1.4810798
    [33]
    Kahnfeld D et al 2018 Plasma Sources Sci. Technol. 27 124002 doi: 10.1088/1361-6595/aaf29a
    [34]
    Héron A and Adam J C 2013 Phys. Plasmas 20 082313 doi: 10.1063/1.4818796
    [35]
    Hara K and Cho S 2017 Radial-azimuthal particle-in-cell simulation of a Hall effect thruster 35th International Electric Propulsion Conference (Atlanta) (IEPC) 2017-495
    [36]
    Croes V et al 2017 Plasma Sources Sci. Technol. 26 034001 doi: 10.1088/1361-6595/aa550f
    [37]
    Janhunen S et al 2018 Phys. Plasmas 25 082308 doi: 10.1063/1.5033896
    [38]
    Taccogna F et al 2019 Plasma Sources Sci. Technol. 28 064002 doi: 10.1088/1361-6595/ab08af
    [39]
    Hirakawa M and Arakawa Y 1995 Particle simulation of plasma phenomena in Hall thrusters 24th Int. Electric Propulsion Conf. (Moscow) (IEPC) 1995-164
    [40]
    Minelli P and Taccogna F 2018 IEEE Trans. Plasma Sci. 46 219 doi: 10.1109/TPS.2017.2766182
    [41]
    Hara K and Hanquist K 2018 Plasma Sources Sci. Technol. 27 065004 doi: 10.1088/1361-6595/aac6b9
    [42]
    Hockney R W and Eastwood J W 1989 Computer Simulation Using ParticlesBristolIOP Publishing
    [43]
    Birdsall C K and Langdon A B 2005 Plasma Physics Via Computer SimulationLondonTaylor and Francis
    [44]
    Taccogna F and Garrigues L 2019 Reviews of Modern Plasma Physics 3 12 doi: 10.1007/s41614-019-0033-1
    [45]
    Morozov A I and Savelyev V V 2000 Reviews of Plasma Physics ed B B Kadomtsev and V D Shafranov (New York: Consultants Bureau) 21, 203
    [46]
    Lopez Ortega A et al 2019 J. Appl. Phys. 125 033302 doi: 10.1063/1.5077097
    [47]
    Mikellides I G et al 2015 IEEE Trans. on Plasma Sci. 43 173 doi: 10.1109/TPS.2014.2320876
    [48]
    Shagayda A A 2007 Nonlinear sollutions for magnetostatic problem in two-dimentional flat and axisymmetric regions (Magnet2D), No. 2007614083
    [49]
    Araki S J 2014 Multi-scale multi-species modeling for plasma devices PhD Thesis Electronic Thesis and Dissertations UCLA, University of California, Los Angeless
    [50]
    Perez-Grande D et al 2016 Applied Sciences 6 354 doi: 10.3390/app6110354
    [51]
    Vazquez P A and Castellanos A 2005 Weighting of charge in PICC odes for unstructured meshes in cylindrical coordinates: application to charged jets Conf. on Electrical Institution and Dielectric Phenomena (Piscataway, NJ: IEEE) (https://doi.org/10.1109/CEIDP.2005.1560729)
    [52]
    Bittencourt J A 2004 Fundamentals of Plasma Physics3rd ednBerlinSpringer
    [53]
    Mikellides I G and Lopez-Ortega A 2019 Plasma Sources Sci. Technol. 28 014003 doi: 10.1088/1361-6595/aae63b
    [54]
    Shashkov A, Lovtsov A and Tomilin D 2019 Eur. Phys. J. D 73 173 doi: 10.1140/epjd/e2019-90641-y
    [55]
    Shashkov A et al 2022 Plasma Sci. Technol. 24 065502 doi: 10.1088/2058-6272/ac59e1
    [56]
    Hobbs G D and Wesson J A 1967 Plasma Phys. 9 85 doi: 10.1088/0032-1028/9/1/410
    [57]
    Barral S and Ahedo E 2009 Phys. Rev. E 79 046401 doi: 10.1103/PhysRevE.79.046401
    [58]
    [59]
    Belikov M B et al 2007 Probe measurements in the channel of 1.5 kW hall thruster with discharge voltage up to 1000 V 30th Int. Electric Propulsion Conf. (Florence) (IEPC)
    [60]
    Boccelli S et al 2020 Phys. Plasmas 27 123506 doi: 10.1063/5.0025651
  • Related Articles

    [1]H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3
    [2]Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90
    [3]Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540
    [4]Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f
    [5]WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11
    [6]DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17
    [7]NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11
    [8]ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04
    [9]LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17
    [10]CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15
  • Cited by

    Periodical cited type(2)

    1. Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499
    2. Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690

    Other cited types(0)

Catalog

    Article views (69) PDF downloads (64) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return