Citation: | Bin TIAN, Mario MERINO, Jie WAN, Yuan HU, Yong CAO. Investigation of radial heat conduction with 1D self-consistent model in helicon plasmas[J]. Plasma Science and Technology, 2023, 25(1): 015401. DOI: 10.1088/2058-6272/ac8399 |
A 1D radially self-consistent model in helicon plasmas has been established to investigate the influence of radial heat conduction on plasma transport and wave propagation. Two kinds of 1D radial fluid models, with and without considering heat conduction, have been developed to couple the 1D plasma–wave interaction model, and self-consistent solutions have been obtained. It is concluded that in the low magnetic field range the radial heat conduction plays a moderate role in the transport of helicon plasmas and the importance depends on the application of the helicon source. It influences the local energy balance leading to enhancement of the electron temperature in the bulk region and a decrease in plasma density. The power deposition in the plasma is mainly balanced by collisional processes and axial diffusion, whereas it is compensated by heat conduction in the bulk region and consumed near the boundary. The role of radial heat conduction in the large magnetic field regime becomes negligible and the two fluid models show consistency. The local power balance, especially near the wall, is improved when conductive heat is taken into account.
This work was supported by National Natural Science Foundation of China (No. 51907039) and Shenzhen Technology Project (Nos. JCYJ20190806142603534 and ZDSYS201707280904031). Mario Merino's contribution was supported by the ESPEOS project (No. PID2019-108034RB-I00/AEI/10.13039/501100011033), funded by the Agencia Estatal de Investigación (Spanish National Research Agency).
[1] |
Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci. 25 1229 doi: 10.1109/27.650898
|
[2] |
Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci. 25 1245 doi: 10.1109/27.650899
|
[3] |
Boswell R W 1984 Plasma Phys. Control. Fusion 26 1147 doi: 10.1088/0741-3335/26/10/001
|
[4] |
Chen F F 2015 Plasma Sources Sci. Technol. 24 014001 doi: 10.1088/0963-0252/24/1/014001
|
[5] |
Ahedo E 2011 Plasma Phys. Control. Fusion 53 124037 doi: 10.1088/0741-3335/53/12/124037
|
[6] |
Ahedo E 2013 Prog. Propul. Phys. 4 337
|
[7] |
Shamrai K P and Taranov V B 1994 Plasma Phys. Control. Fusion 36 1719 doi: 10.1088/0741-3335/36/11/002
|
[8] |
Cho S 1996 Phys. Plasmas 3 4268 doi: 10.1063/1.871556
|
[9] |
Mouzouris Y and Scharer J E 1998 Phys. Plasmas 5 4253 doi: 10.1063/1.873161
|
[10] |
Chen G Y et al 2006 Phys. Plasmas 13 123507 doi: 10.1063/1.2402913
|
[11] |
Tian B, Merino M and Ahedo E 2018 Plasma Sources Sci. Technol. 27 114003 doi: 10.1088/1361-6595/aaec32
|
[12] |
Fruchtman A, Makrinich G and Ashkenazy J 2005 Plasma Sources Sci. Technol. 14 152 doi: 10.1088/0963-0252/14/1/017
|
[13] |
Sternberg N, Godyak V and Hoffman D 2006 Phys. Plasmas 13 063511 doi: 10.1063/1.2214537
|
[14] |
Ahedo E 2009 Phys. Plasmas 16 113503 doi: 10.1063/1.3262529
|
[15] |
Ahedo E and Navarro-Cavallé J 2013 Phys. Plasmas 20 043512 doi: 10.1063/1.4798409
|
[16] |
Lafleur T 2014 Phys. Plasmas 21 043507 doi: 10.1063/1.4871727
|
[17] |
Cho S and Lieberman M A 2003 Phys. Plasmas 10 882 doi: 10.1063/1.1542613
|
[18] |
Curreli D and Chen F F 2011 Phys. Plasmas 18 113501 doi: 10.1063/1.3656941
|
[19] |
Bose D, Govindan T R and Meyyappan M 2003 IEEE Trans. Plasma Sci. 31 464 doi: 10.1109/TPS.2003.815475
|
[20] |
Bose D, Govindan T R and Meyyappan M 2004 Plasma Sources Sci. Technol. 13 553 doi: 10.1088/0963-0252/13/4/001
|
[21] |
Kinder R L and Kushner M J 2001 J. Vac. Sci. Technol. A 19 76 doi: 10.1116/1.1329122
|
[22] |
Kinder R L, Ellingboe A R and Kushner M J 2004 Plasma Sources Sci. Technol. 13 187 doi: 10.1088/0963-0252/13/1/c01
|
[23] |
Isayama S et al 2019 Phys. Plasmas 26 023517 doi: 10.1063/1.5063506
|
[24] |
Chen G Y 2008 A self-consistent model of helicon discharge PhD Thesis The University of Texas at Austin, ATX, USA
|
[25] |
Naulin V, Windisch T and Grulke O 2008 Phys. Plasmas 15 012307 doi: 10.1063/1.2829603
|
[26] |
Takase K, Takahashi K and Takao Y 2018 Phys. Plasmas 25 023507 doi: 10.1063/1.5015937
|
[27] |
Emoto K, Takahashi K and Takao Y 2021 Phys. Plasmas 28 093506 doi: 10.1063/5.0053336
|
[28] |
Zhou J et al 2022 Plasma Sources Sci. Technol. 31 045021 doi: 10.1088/1361-6595/ac64bc
|
[29] |
Cho S and Lieberman M A 2003 Plasma Sources Sci. Technol. 12 244 doi: 10.1088/0963-0252/12/2/316
|
[30] |
Bittencourt J A 2013 Fundamentals of Plasma Physics 3rd edn (New York: Springer Science & Business Media) ( https://doi.org/10.1007/978-1-4757-4030-1)
|
[31] |
Tian B, Ahedo E and Navarro-Cavalle J 2014 Investigation of plasma–wave interaction in helicon antenna thrusters In 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference Cleveland (Cleveland, OH: AIAA) (https://doi.org/10.2514/6.2014-3475)
|
[32] |
Chen F F and Curreli D 2013 Phys. Plasmas 20 057102 doi: 10.1063/1.4801740
|
[33] |
Arnush D and Chen F F 1998 Phys. Plasmas 5 1239 doi: 10.1063/1.872782
|
[34] |
Lieberman M A and Lichtenberg A J 2005 Principles of Plasma Discharges and Materials Processing 2nd edn (Hoboken: Wiley) ( https://doi.org/10.1002/047172425)
|
[35] |
Chen F F and Arnush D 1997 Phys. Plasmas 4 3411 doi: 10.1063/1.872483
|
[36] |
Godyak V A 1986 Soviet Radio Frequency Discharge Research (Falls Church: Delphic Associates)
|
[37] |
Wu H M, Graves D B and Porteous R K 1995 Plasma Sources Sci. Technol. 4 22 doi: 10.1088/0963-0252/4/1/003
|
[38] |
Ahedo E, Gallardo J M and Martınez-Sánchez M 2002 Phys. Plasmas 9 4061 doi: 10.1063/1.1499496
|
[1] | Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817 |
[2] | Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e |
[3] | Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789 |
[4] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[5] | Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19 |
[6] | Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b |
[7] | LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10 |
[8] | LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02 |
[9] | SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02 |
[10] | LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19 |
1. | Choi, M.-S., Kim, S.-J., Lee, Y.-S. et al. Computational Analysis on Self-Resonance Frequency of Solenoid and Planar Inductor. Applied Science and Convergence Technology, 2023, 32(2): 54-57. DOI:10.5757/ASCT.2023.32.2.54 |