Citation: | Wenbin LIU, Shouzhi WANG, Binbin WANG, Pengjuan SU, Zhengbo CHENG, Yi TAN, Zhe GAO, Yuanxi WAN, Xiang GAO, Xiaodong LIN, Jianjun HUANG, Muquan WU, Xiang ZHU, Baolong HAO, Hang LI. Quasi-coherent mode in core plasma of SUNIST spherical tokamak[J]. Plasma Science and Technology, 2023, 25(1): 015103. DOI: 10.1088/2058-6272/ac85a3 |
A quasi-coherent (QC) mode was observed in the core region of low-density ohmic plasmas in Sino-UNIted Spherical Tokamak. In experiments on the QC mode, two sets of moveable Langmuir probes (LPs) were used to measure the local parameters including floating potential, electron temperature, electron density, and so on, as well as their profiles. To monitor the magnetohydrodynamic activities, a Mirnov probe was used to measure the poloidal magnetic fluctuation. The QC mode can be seen in the spectra of floating potential, but there is no similar peak in the spectra of magnetic fluctuation. Thus, the QC mode is probably electrostatic. By analyzing the electrostatic potential fluctuations from the LPs, the features of the QC mode including frequency, wavenumber, propagation direction, and dependence on collisionality are identified, which are consistent with the characteristics of dissipative trapped electron mode.
The authors would thank Dr. Weixing Wang from PPPL, Jianqiang Xu from SWIP, and Yong Xiao from Zhejiang University for useful help. This work is supported by National Natural Science Foundation of China (Nos. 11827810, 11875177, 12105189 and 12075155), International Atomic Energy Agency Research (No. 22733), the National Magnetic Confinement Fusion Program of China (No. 2019YFE03010001).
[1] |
Arnichand H et al 2014 Nucl. Fusion 54 123017 doi: 10.1088/0029-5515/54/12/123017
|
[2] |
Arnichand H et al 2015 Nucl. Fusion 55 093021 doi: 10.1088/0029-5515/55/9/093021
|
[3] |
Winsor N, Johnson J L and Dawson J M 1968 Phys. Fluids 11 2448 doi: 10.1063/1.1691835
|
[4] |
Zhao K J et al 2006 Phys. Rev. Lett. 96 255004 doi: 10.1103/PhysRevLett.96.255004
|
[5] |
Liu A D et al 2009 Phys. Rev. Lett. 103 095002 doi: 10.1103/PhysRevLett.103.095002
|
[6] |
Fujisawa A 2009 Nucl. Fusion 49 013001 doi: 10.1088/0029-5515/49/1/013001
|
[7] |
Vershkov V A et al 2005 Nucl. Fusion 45 S203 doi: 10.1088/0029-5515/45/10/S17
|
[8] |
Vershkov V A et al 2013 Nucl. Fusion 53 083014 doi: 10.1088/0029-5515/53/8/083014
|
[9] |
Krämer-Flecken A et al 2004 Nucl. Fusion 44 1143 doi: 10.1088/0029-5515/44/11/001
|
[10] |
Arnichand H et al 2016 Plasma Phys. Control. Fusion 58 014037 doi: 10.1088/0741-3335/58/1/014037
|
[11] |
Zhong W L et al 2016 Phys. Plasmas 23 060702 doi: 10.1063/1.4953427
|
[12] |
Lee J A et al 2018 Phys. Plasmas 25 022513 doi: 10.1063/1.5008468
|
[13] |
Banerjee S, Diallo A and Zweben S J 2016 Phys. Plasmas 23 044502 doi: 10.1063/1.4946871
|
[14] |
Wang H Q et al 2014 Phys. Rev. Lett. 112 185004 doi: 10.1103/PhysRevLett.112.185004
|
[15] |
Sun P J et al 2019 Phys. Plasmas 26 012304 doi: 10.1063/1.5049209
|
[16] |
Yashin A Y et al 2021 Nucl. Fusion 61 092001 doi: 10.1088/1741-4326/ac1297
|
[17] |
Wang Y et al 2003 Plasma Sci. Technol. 5 2017 doi: 10.1088/1009-0630/5/6/001
|
[18] |
He Y X 2002 Plasma Sci. Technol. 4 1355 doi: 10.1088/1009-0630/4/4/003
|
[19] |
Zhong H et al 2016 Rev. Sci. Instrum. 87 11E109 doi: 10.1063/1.4960062
|
[20] |
Su P J et al 2021 Rev. Sci. Instrum. 92 043538 doi: 10.1063/5.0043667
|
[21] |
Wang B B et al 2018 Rev. Sci. Instrum. 89 10D128 doi: 10.1063/1.5038085
|
[22] |
Langmuir I 1929 Phys. Rev. 33 954 doi: 10.1103/PhysRev.33.954
|
[23] |
Matthews G F 1994 Plasma Phys. Control. Fusion 36 1595 doi: 10.1088/0741-3335/36/10/002
|
[24] |
Jiang M et al 2018 Nucl. Fusion 58 026002 doi: 10.1088/1741-4326/aa9ac0
|
[25] |
Wesson J 2011 Tokamaks 4th ed (Oxford: Oxford University Press)
|
[26] |
Adam J C, Tang W M and Rutherford P H 1976 Phys. Fluids 19 561 doi: 10.1063/1.861489
|
[27] |
Hahm T S and Tang W M 1991 Phys. Fluids B Plasma Phys. 3 989 doi: 10.1063/1.859854
|
[28] |
Adam J C, Laval G and Pellat R 1973 Nucl. Fusion 13 47 doi: 10.1088/0029-5515/13/1/006
|
[29] |
Chu K R and Manheimer W M 1978 Nucl. Fusion 18 29 doi: 10.1088/0029-5515/18/1/006
|
[30] |
Zhang L 2009 Development of single particle simulation system and its application at the SUNIST spherical tokamak PhD Thesis Tsinghua University, Beijing (in Chinese)
|
[31] |
Doyle E J et al 2007 Nucl. Fusion 47 S18 doi: 10.1088/0029-5515/47/6/S02
|
[32] |
Conway G D et al 2006 Nucl. Fusion 46 S799 doi: 10.1088/0029-5515/46/9/S15
|
[33] |
Rice J E et al 2011 Phys. Rev. Lett. 107 265001 doi: 10.1103/PhysRevLett.107.265001
|
[34] |
Angioni C et al 2005 Phys. Plasmas 12 040701 doi: 10.1063/1.1867492
|
[35] |
Angioni C et al 2011 Phys. Rev. Lett. 107 215003 doi: 10.1103/PhysRevLett.107.215003
|
[36] |
Sung C et al 2013 Nucl. Fusion 53 083010 doi: 10.1088/0029-5515/53/8/083010
|
[37] |
Romanelli M, Regnoli G and Bourdelle C 2007 Phys. Plasmas 14 082305 doi: 10.1063/1.2755981
|
[38] |
Zhong W L et al 2013 Phys. Rev. Lett. 111 265001 doi: 10.1103/PhysRevLett.111.265001
|
[39] |
Wang W X et al 2015 Phys. Plasmas 22 102509 doi: 10.1063/1.4933216
|
[40] |
Wang W X et al 2015 Nucl. Fusion 55 122001 doi: 10.1088/0029-5515/55/12/122001
|
[1] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[2] | Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90 |
[3] | Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540 |
[4] | Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f |
[5] | WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11 |
[6] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[7] | NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11 |
[8] | ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04 |
[9] | LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17 |
[10] | CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15 |
1. | Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499 |
2. | Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690 |