
Citation: | Chenwen WANG, Yang LIU, Meng SUN, Tianliang ZHANG, Junfa XIE, Qiang CHEN, Haibao ZHANG. Effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field[J]. Plasma Science and Technology, 2023, 25(4): 045403. DOI: 10.1088/2058-6272/aca1fa |
The effect of neutral pressure on the blue core in Ar helicon plasma under an inhomogeneous magnetic field was investigated in this work. The neutral pressure was set to 0.08 Pa, 0.36 Pa, and 0.68 Pa. A Nikon camera, intensified charge-coupled device (ICCD), optical emission spectrometer (OES), and Langmuir probe were used to diagnose the blue core in helicon plasma. Helicon plasma discharges experienced density jumps from the E mode, H mode to W mode before power just rose to 200 W. The plasma density increased and maintained a central peak with the increase of neutral pressure. However, the brightness of the blue core gradually decreased. It is demonstrated that the relative intensity of Ar II spectral lines and the ionization rate in the central area were reduced. Radial electron temperature profiles were flattened and became hollow as neutral pressure increased. It is demonstrated that increasing the neutral pressure weakened the central heating efficiency dominated by the helicon wave and strengthened the edge heating efficiency governed by the TG wave and skin effect. Therefore, the present experiment successfully reveals how the neutral pressure affects the heating mechanism of helicon plasma in an inhomogeneous magnetic field.
The influence of the isotope mass on plasma confinement properties has been a longstanding issue in magnetically confined plasmas. According to gyro-Bohm scaling [1, 2], the plasma transport diffusivity scales as
The first experimental observation in the TEXTOR tokamak has demonstrated that the amplitude of geodesic acoustic mode (GAM) zonal flows substantially increases during the transition from H to D dominated plasmas [9], which is qualitatively consistent with the GKV simulation [17]. However, up to date, there has been little evidence showing the increase of nonlinear interplay between ambient turbulence and zonal flows in heavier mass isotope plasmas.
In this paper, we present direct experimental evidence to expose the fact that in D majority plasmas, the nonlinear energy transfer plays a dominant role in exciting larger GAM zonal flows by extracting more energy from ambient turbulence, which results in lower turbulent transport and better confinement compared to H majority plasmas. The results provide additional proof for understanding the isotope effects in fusion plasmas.
The experiments were carried out in the Ohmically-heated H and D plasmas at the HL-2A tokamak with a limiter configuration. The major and minor radii are R = 165 cm and a = 40 cm, respectively, line-averaged plasma density
Typical discharge waveforms in H and D dominant plasmas are plotted in figure 1. It can be seen that with the same plasma current, loop voltage and line-averaged density, the plasma stored energy in D majority plasmas is higher than that in H ones, similar to those observed in other devices [4, 5, 7, 8, 10–12, 16]. Figure 1(e) shows time traces of the reciprocating Langmuir probes plunged in the stationary phase of the H and D discharges. The probe measurement in both discharges passed through approximately the same radial locations. It has been confirmed that the plasma horizontal position kept almost unchanged as the probes plunged into the plasma. Figure 2 depicts the edge equilibrium profiles averaged in several similar H (black) and D (red) majority discharges. Here, the ∆r = 0 denotes the LCFS location. As shown in figures 2(a) and (b), the local ne and Te in the edge region (inside the LCFS, ∆r < 0) are both enhanced in D plasmas, suggesting a higher edge pressure gradient, in agreement with higher stored energy achieved in the D plasma (see figure 1(d)). Inside the LCFS, both Vf and Vp are substantially lower in D plasmas than in H ones, leading to a slightly deeper Er well and larger Er shear (
In order to gain an insight into the isotope effects on turbulence levels and associated transport, we compared the RMS values of density, electron temperature and radial velocity fluctuations,
To understand the mechanisms responsible for the reduction of turbulent transport in the isotope deuterium plasmas, we analyzed the spectrum characteristics of edge turbulence and zonal flows in H and D plasmas. In HL-2A, a low frequency coherent mode with long-range toroidal correlations, namely GAM zonal flows, has been routinely observed in floating potential signals [32, 33]. Theories predict that the GAM zonal flow has poloidally symmetric (m/n = 0/0) potential and asymmetric (m/n = 1/0) density perturbations [34, 35]. In the present experiments, it is found that the maximum GAM amplitude presents at ∆r ≈ -3 cm inside the LCFS [36]. Plotted in figure 4 are the frequency spectra of floating potential (
According to theories [34, 35], the GAM frequency
To further compare the strength of the nonlinear coupling in turbulence between H and D plasmas, the squared auto-bicoherence [38], defined as b2(f1, f2) = |B(f1, f2)|2/(〈|X(f1)X(f2)|2〉〈|X(f1 ± f2)|2〉), where B(f1, f2) = 〈X(f1)X(f2)X*(f1 ± f2)〉 and X(f) is the Fourier transform of the fluctuation signal x(t), has been computed. Figures 6(a) and (b) show contour-plots of the squared auto-bicoherence estimated by floating potential fluctuation signals measured at ∆r ≈ - 3 cm in D and H dominant plasmas. It is clear that the bicoherence along the f2 = ±10 kHz and f2 = - f1 ± 10 kHz lines are much more prominent in D plasmas than that in H ones. This comparison illustrates stronger nonlinear coupling occurred between GAM zonal flows and turbulence in D plasmas. The summation of the squared bicoherence is calculated as
In summary, the isotope effects on plasma confinement, edge turbulence and turbulent transport as well as GAM zonal flows have been studied using a two-step Langmuir probe array in H and D majority plasmas in the HL-2A tokamak. Evidence shows that under similar discharge parameters the D plasma has better confinement and lower turbulent transport than the H plasma. Meanwhile, it is observed that the magnitude of GAM zonal flows, the tilting angle of the Reynolds stress tensor, and the turbulence correlation lengths are all larger in the edge region of the D plasma. The results provide direct experimental proof on the importance of the nonlinear energy transfer between turbulence and zonal flows for governing the isotope effects in fusion plasmas.
This work was supported by National Natural Science Foundation of China (Nos. 11505013 and 11875090), Beijing Municipal Natural Science Foundation (No. 1192008), and Beijing Municipal Commission of Education (Nos. KM202010015003, 22150122029, and 202210015017).
[1] |
Boswell R W 1970 Phys. Lett. A
33 457 doi: 10.1016/0375-9601(70)90606-7
|
[2] |
Ellingboe A R and Boswell R W 1996 Phys. Plasmas
3 2797 doi: 10.1063/1.871713
|
[3] |
Chen F F 2015 Plasma Sources Sci. Technol.
24 014001 doi: 10.1088/0963-0252/24/1/014001
|
[4] |
Boswell R W and Chen F F 1997 IEEE Trans. Plasma Sci.
25 1229 doi: 10.1109/27.650898
|
[5] |
Chen F F and Boswell R W 1997 IEEE Trans. Plasma Sci.
25 1245 doi: 10.1109/27.650899
|
[6] |
Shinohara S 2018 Adv. Phys. X
3 1420424 doi: 10.1080/23746149.2017.1420424
|
[7] |
Isayama S, Shinohara S and Hada T 2018 Plasma Fusion Res.
13 1101014 doi: 10.1585/pfr.13.1101014
|
[8] |
Takahashi K et al 2014 J. Phys. D: Appl. Phys.
47 425201 doi: 10.1088/0022-3727/47/42/425201
|
[9] |
Chen F F 2015 IEEE Trans. Plasma Sci.
43 195 doi: 10.1109/TPS.2014.2361476
|
[10] |
Shinohara S et al 2019 Plasma Phys. Control. Fusion
61 014017 doi: 10.1088/1361-6587/aadd67
|
[11] |
Takahashi K and Ando A 2017 Plasma Phys. Control. Fusion
59 054007 doi: 10.1088/1361-6587/aa626f
|
[12] |
Charles C 2009 J. Phys. D: Appl. Phys.
42 163001 doi: 10.1088/0022-3727/42/16/163001
|
[13] |
Bathgate S N, Bilek M M M and McKenzie D R 2017 Plasma Sci. Technol.
19 083001 doi: 10.1088/2058-6272/aa71fe
|
[14] |
Takahashi K 2019 Rev. Mod. Plasma Phys.
3 3 doi: 10.1007/s41614-019-0024-2
|
[15] |
Chen F F and Torreblanca H 2007 Plasma Phys. Control. Fusion
49 A81 doi: 10.1088/0741-3335/49/5A/S07
|
[16] |
Chen F F 2014 Phys. Plasmas
21 093511 doi: 10.1063/1.4896238
|
[17] |
Blackwell B D et al 2012 Plasma Sources Sci. Technol.
21 055033 doi: 10.1088/0963-0252/21/5/055033
|
[18] |
Buttenschön B, Fahrenkamp N and Grulke O 2018 Plasma Phys. Control. Fusion
60 075005 doi: 10.1088/1361-6587/aac13a
|
[19] |
Sharma N et al 2018 Rev. Sci. Instrum.
89 083508 doi: 10.1063/1.5030624
|
[20] |
Barada K K et al 2013 Phys. Plasmas
20 042119 doi: 10.1063/1.4802823
|
[21] |
Wang Y et al 2015 Phys. Plasmas
22 093507 doi: 10.1063/1.4930287
|
[22] |
Guo X M et al 1999 Phys. Plasmas
6 3400 doi: 10.1063/1.873580
|
[23] |
Virko V F et al 2004 Phys. Plasmas
11 3888 doi: 10.1063/1.1764830
|
[24] |
Takahashi K et al 2016 Phys. Rev. Lett.
116 135001 doi: 10.1103/PhysRevLett.116.135001
|
[25] |
Yadav S et al 2019 Phys. Plasmas
26 082109 doi: 10.1063/1.5094814
|
[26] |
Takahashi K et al 2017 Phys. Plasmas
24 084503 doi: 10.1063/1.4990110
|
[27] |
Yadav S et al 2018 Phys. Plasmas
25 043518 doi: 10.1063/1.5028576
|
[28] |
Takahashi K et al 2009 Appl. Phys. Lett.
94 191503 doi: 10.1063/1.3136721
|
[29] |
Charles C 2010 Appl. Phys. Lett.
96 051502 doi: 10.1063/1.3309668
|
[30] |
Franck C M, Grulke O and Klinger T 2003 Phys. Plasmas
10 323 doi: 10.1063/1.1528903
|
[31] |
Otsuka S et al 2014 Plasma Fusion Res.
9 3406047 doi: 10.1585/pfr.9.3406047
|
[32] |
Franck C M et al 2005 Plasma Sources Sci. Technol.
14 226 doi: 10.1088/0963-0252/14/2/003
|
[33] |
Ghosh S et al 2017 Phys. Plasmas
24 020703 doi: 10.1063/1.4975665
|
[34] |
Chang L et al 2012 Phys. Plasmas
19 083511 doi: 10.1063/1.4748874
|
[35] |
Chang L et al 2020 AIP Adv.
10 105114 doi: 10.1063/5.0013803
|
[36] |
Guittienne P, Chevalier E and Hollenstein C 2005 J. Appl. Phys.
98 083304 doi: 10.1063/1.2081107
|
[37] |
Chi K K, Sheridan T E and Boswell R W 1999 Plasma Sources Sci. Technol.
8 421 doi: 10.1088/0963-0252/8/3/312
|
[38] |
Fazelpour S et al 2020 IEEE Trans. Plasma Sci.
48 2337 doi: 10.1109/TPS.2020.3003090
|
[39] |
Eslami M and Meshkani S 2020 Eur. Phys. J. D
74 58 doi: 10.1140/epjd/e2020-100454-0
|
[40] |
Isayama S et al 2016 Phys. Plasmas
23 063513 doi: 10.1063/1.4951017
|
[41] |
Thakur S C et al 2015 IEEE Trans. Plasma Sci.
43 2754 doi: 10.1109/TPS.2015.2446537
|
[42] |
Takahashi K et al 2011 IEEE Trans. Plasma Sci.
39 2438 doi: 10.1109/TPS.2011.2143694
|
[43] |
Corr C S and Boswell R W 2007 Phys. Plasmas
14 122503 doi: 10.1063/1.2802080
|
[44] |
Agnello R et al 2020 J. Plasma Phys.
86 905860306 doi: 10.1017/S0022377820000173
|
[45] |
Zhang G L et al 2018 Plasma Sci. Technol.
20 085603 doi: 10.1088/2058-6272/aac014
|
[46] |
Zhang T L et al 2021 Phys. Plasmas
28 073505 doi: 10.1063/5.0050180
|
[47] |
Antar G et al 2021 IEEE Trans. Plasma Sci.
49 1706 doi: 10.1109/TPS.2021.3070638
|
[48] |
Wang C W et al 2021 Phys. Plasmas
28 123519 doi: 10.1063/5.0070479
|
[49] |
Virko V F and Virko Y V 2019 Ukr. J. Phys.
64 223 doi: 10.15407/ujpe64.3.223
|
[50] |
Longmier B W and Hershkowitz N 2005 'Electrodeless'
plasma cathode for neutralization of ion thrusters 41st AIAA/
ASME/SAE/ASEE Joint Propulsion Conf. & Exhibit
(Tucson) (AIAA) (https://doi.org/10.2514/6.2005-3856)
|
[51] |
Zhao G et al 2017 Phys. Plasmas
24 123507 doi: 10.1063/1.5002725
|
[52] |
Cui R L et al 2020 Plasma Sources Sci. Technol.
29 015018 doi: 10.1088/1361-6595/ab56dc
|
[53] |
Zhang T L et al 2020 Plasma Sci. Technol.
22 085405 doi: 10.1088/2058-6272/ab8551
|
[54] |
Chen F F and Torreblanca H 2007 Plasma Sources Sci. Technol.
16 593 doi: 10.1088/0963-0252/16/3/019
|
[55] |
Anand V et al 2018 J. Vac. Sci. Technol. A
36 04F407 doi: 10.1116/1.5023107
|
[56] |
Czerwiec T and Graves D B 2004 J. Phys. D: Appl. Phys.
37 2827 doi: 10.1088/0022-3727/37/20/009
|
[57] |
Khoshhal M, Habibi M and Boswell R 2020 AIP Adv.
10 065312 doi: 10.1063/1.5140346
|
[58] |
Chai K B and Kwon D H 2019 J. Quant. Spectrosc. Radiat. Transfer
227 136 doi: 10.1016/j.jqsrt.2019.02.015
|
[59] |
Chen F F 2012 Plasma Sources Sci. Technol.
21 055013 doi: 10.1088/0963-0252/21/5/055013
|
[60] |
Ghosh S et al 2016 Fusion Eng. Des.
112 915 doi: 10.1016/j.fusengdes.2016.05.019
|
[61] |
Neumann G et al 1993 Rev. Sci. Instrum.
64 19 doi: 10.1063/1.1144432
|
[62] |
Popov T K et al 2016 Plasma Sources Sci. Technol.
25 033001 doi: 10.1088/0963-0252/25/3/033001
|
[63] |
Demidov V I, Ratynskaia S V and Rypdal K 2002 Rev. Sci. Instrum.
73 3409 doi: 10.1063/1.1505099
|
[64] |
Godyak V A and Demidov V I 2011 J. Phys. D: Appl. Phys.
44 233001 doi: 10.1088/0022-3727/44/23/233001
|
[65] |
Chen F F 1965 J. Appl. Phys.
36 675 doi: 10.1063/1.1714200
|
[66] |
Ma C et al 2015 IEEE Trans. Plasma Sci.
43 3702 doi: 10.1109/TPS.2015.2436973
|
[67] |
Chang Y J et al 2021 IEEE Trans. Plasma Sci.
49 3733 doi: 10.1109/TPS.2021.3121396
|
[68] |
Aguirre E M et al 2020 Phys. Plasmas
27 123501 doi: 10.1063/5.0025523
|
[69] |
Zhao G et al 2017 Chin. Phys. B
26 105201 doi: 10.1088/1674-1056/26/10/105201
|
[70] |
Godyak V A, Piejak R B and Alexandrovich B M 1992 Plasma Sources Sci. Technol.
1 36 doi: 10.1088/0963-0252/1/1/006
|
[71] |
Green K M et al 2001 IEEE Trans. Plasma Sci.
29 399 doi: 10.1109/27.922753
|
[72] |
Mori Y et al 2004 Plasma Sources Sci. Technol.
13 424 doi: 10.1088/0963-0252/13/3/009
|
[1] | Yaguang MEI (梅亚光), Shusen CHENG (程树森), Zhongqi HAO (郝中骐), Lianbo GUO (郭连波), Xiangyou LI (李祥友), Xiaoyan ZENG (曾晓雁), Junliang GE (葛军亮). Quantitative analysis of steel and iron by laser-induced breakdown spectroscopy using GA-KELM[J]. Plasma Science and Technology, 2019, 21(3): 34020-034020. DOI: 10.1088/2058-6272/aaf6f3 |
[2] | Jiamin LIU (刘佳敏), Ding WU (吴鼎), Cailong FU (付彩龙), Ran HAI (海然), Xiao YU (于潇), Liying SUN (孙立影), Hongbin DING (丁洪斌). Improvement of quantitative analysis of molybdenum element using PLS-based approaches for laser-induced breakdown spectroscopy in various pressure environments[J]. Plasma Science and Technology, 2019, 21(3): 34017-034017. DOI: 10.1088/2058-6272/aaf821 |
[3] | Congyuan PAN (潘从元), Jiao HE (何娇), Guangqian WANG (王广谦), Xuewei DU (杜学维), Yongbin LIU (刘永斌), Yahui SU (苏亚辉). An efficient procedure in quantitative analysis using laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2019, 21(3): 34012-034012. DOI: 10.1088/2058-6272/aaf50f |
[4] | Qingdong ZENG (曾庆栋), Fan DENG (邓凡), Zhiheng ZHU (朱志恒), Yun TANG (唐云), Boyun WANG (王波云), Yongjun XIAO (肖永军), Liangbin XIONG (熊良斌), Huaqing YU (余华清), Lianbo GUO (郭连波), Xiangyou LI (李祥友). Portable fiber-optic laser-induced breakdown spectroscopy system for the quantitative analysis of minor elements in steel[J]. Plasma Science and Technology, 2019, 21(3): 34006-034006. DOI: 10.1088/2058-6272/aadede |
[5] | Xiaoyong HE (何小勇), Runhua LI (李润华), Fujuan WANG (王福娟). Elemental analysis of copper alloy by high repetition rate LA-SIBS using compact fiber spectrometer[J]. Plasma Science and Technology, 2019, 21(3): 34005-034005. DOI: 10.1088/2058-6272/aae1f1 |
[6] | Dan LUO (罗丹), Ying LIU (刘英), Xiangyu LI (李香宇), Zhenyang ZHAO (赵珍阳), Shigong WANG (王世功), Yong ZHANG (张勇). Quantitative analysis of C, Si, Mn, Ni, Cr and Cu in low-alloy steel under ambient conditions via laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2018, 20(7): 75504-075504. DOI: 10.1088/2058-6272/aabc5d |
[7] | Yuqing XIONG (熊玉卿), Hengjiao GAO (高恒蛟), Ni REN (任妮), Zhongwei LIU(刘忠伟). Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides[J]. Plasma Science and Technology, 2018, 20(3): 35507-035507. DOI: 10.1088/2058-6272/aa9cdf |
[8] | Shuxia ZHAO (赵书霞), Lei ZHANG (张雷), Jiajia HOU (侯佳佳), Yang ZHAO (赵洋), Wangbao YIN (尹王保), Weiguang MA (马维光), Lei DONG (董磊), Liantuan XIAO (肖连团), Suotang JIA (贾锁堂). Accurate quantitative CF-LIBS analysis of both major and minor elements in alloys via iterative correction of plasma temperature and spectral intensity[J]. Plasma Science and Technology, 2018, 20(3): 35502-035502. DOI: 10.1088/2058-6272/aa97ce |
[9] | ZHU Dehua (朱德华), CAO Yu (曹宇), ZHONG Rong (钟蓉), CHEN Xiaojing (陈孝敬). Quantitative Analysis of Composition Change in AZ31 Magnesium Alloy Using CF-LIBS After Laser Material Processing[J]. Plasma Science and Technology, 2015, 17(11): 909-913. DOI: 10.1088/1009-0630/17/11/03 |
[10] | MAO Yangwu(毛样武), GUO Beibei(郭贝贝), NIE Dunwei(聂敦伟), Domenico MOMBELLO. Tarnish Testing of Copper-Based Alloys Coated with SiO 2 -Like Films by PECVD[J]. Plasma Science and Technology, 2014, 16(5): 486-490. DOI: 10.1088/1009-0630/16/5/08 |
1. | Qin, C., Huang, J., Li, M.-S. The isotope effect on ion temperature gradient mode in CFQS | [CFQS 中离子温度梯度模的同位素效应研究]. Hejubian Yu Dengliziti Wuli/Nuclear Fusion and Plasma Physics, 2024, 44(3): 359-366. DOI:10.16568/j.0254-6086.202403017 | |
2. | Zhou, H., Xu, Y., Kobayashi, M. et al. Isotope effects on transport characteristics of edge and core plasmas heated by neutral beam injection (NBI) in an inward shifted configuration at the Large Helical Device. Nuclear Fusion, 2024, 64(3): 036023. DOI:10.1088/1741-4326/ad22f6 |