Advanced Search+
Long CHEN, Yehui YANG, Yuhao AN, Ping DUAN, Shaojuan SUN, Zuojun CUI, Zichen KAN, Weifu GAO. Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source[J]. Plasma Science and Technology, 2023, 25(3): 035003. DOI: 10.1088/2058-6272/aca502
Citation: Long CHEN, Yehui YANG, Yuhao AN, Ping DUAN, Shaojuan SUN, Zuojun CUI, Zichen KAN, Weifu GAO. Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source[J]. Plasma Science and Technology, 2023, 25(3): 035003. DOI: 10.1088/2058-6272/aca502

Modeling of magnetized collisional plasma sheath with nonextensive electron distribution and ionization source

More Information
  • Corresponding author:

    Ping DUAN, E-mail: duanping@dlmu.edu.cn

  • Received Date: July 25, 2022
  • Revised Date: November 02, 2022
  • Accepted Date: November 21, 2022
  • Available Online: December 06, 2023
  • Published Date: January 18, 2023
  • The properties of an atmospheric-pressure collisional plasma sheath with nonextensively distributed electrons and hypothetical ionization source terms are studied in this work. The Bohm criterion for the magnetized plasma is extended in the presence of an ion–neutral collisional force and ionization source. The effects of electron nonextensive distribution, ionization frequency, ion–neutral collision, magnetic field angle and ion temperature on the Bohm criterion of the plasma sheath are numerically analyzed. The fluid equations are solved numerically in the plasma–wall transition region using a modified Bohm criterion as the boundary condition. The plasma sheath properties such as charged particle density, floating sheath potential and thickness are thoroughly investigated under different kinds of ion source terms, contributions of collisions, and magnetic fields. The results show that the effect of the ion source term on the properties of atmospheric-pressure collisional plasma sheath is significant. As the ionization frequency increases, the Mach number of the Bohm criterion decreases and the range of possible values narrows. When the ion source is considered, the space charge density increases, the sheath potential drops more rapidly, and the sheath thickness becomes narrower. In addition, ion–neutral collision, magnetic field angle and ion temperature also significantly affect the sheath potential profile and sheath thickness.

  • This work was supported by National Natural Science Foundation of China (Nos. 11975062, 11605021 and 11975088) and the China Postdoctoral Science Foundation (No. 2017M621120).

  • [1]
    Hatami M M 2021 Sci. Rep. 11 9531 doi: 10.1038/s41598-021-88894-1
    [2]
    Moulick R, Garg A and Kumar M 2021 Contrib. Plasma Phys. 61 e202100047 doi: 10.1002/ctpp.202100047
    [3]
    Chen F F 1974 Introduction to Plasma Physics (New York: Plenum Press) 290 ( https://doi.org/10.1007/978-1-4757-0459-4_1)
    [4]
    Shibata K et al 2001 Thin Solid Films 386 291 doi: 10.1016/S0040-6090(00)01668-0
    [5]
    Hatami M M 2015 Phys. Plasmas 22 023506
    [6]
    Aanesland A et al 2015 IEEE Trans. Plasma Sci. 43 321 doi: 10.1109/TPS.2014.2369534
    [7]
    Hatami M M, Shokri B and Niknam A R 2009 J. Phys. D: Appl. Phys. 42 025204 doi: 10.1088/0022-3727/42/2/025204
    [8]
    Li Y R et al 2010 Chin. Phys. B 19 085201 doi: 10.1088/1674-1056/19/8/085201
    [9]
    Zhao X Y et al 2016 Chin. Phys. B 25 025202 doi: 10.1088/1674-1056/25/2/025202
    [10]
    Hatami M M and Shokri B 2013 Phys. Plasmas 20 033506 doi: 10.1063/1.4795297
    [11]
    Guthrie A and Wakerling R K 1949 The Characteristics of Electrical Discharges in Magnetic Fields (New York: McGraw-Hill) 77
    [12]
    Godyak V A and Sternberg N 1990 IEEE Trans. Plasma Sci. 18 159 doi: 10.1109/27.45519
    [13]
    El Kaouini M et al 2011 J. Fusion Energy 30 199 doi: 10.1007/s10894-010-9358-z
    [14]
    Benilov M S and Franklin R N 2002 J. Plasma Phys. 67 163 doi: 10.1017/S0022377801001556
    [15]
    El Kaouini M and Chatei H 2012 J. Fusion Energy 31 317 doi: 10.1007/s10894-011-9486-0
    [16]
    Sternberg N and Godyak V 2003 IEEE Trans. Plasma Sci. 31 665 doi: 10.1109/TPS.2003.815812
    [17]
    Hatami M M, Shokri B and Niknam A R 2008 Phys. Plasmas 15 123501 doi: 10.1063/1.3028306
    [18]
    Riemann K U 1991 J. Phys. D: Appl. Phys. 24 493 doi: 10.1088/0022-3727/24/4/001
    [19]
    Das G C, Singha B and Chutia J 1999 Phys. Plasmas 6 3685 doi: 10.1063/1.873627
    [20]
    Khoramabadi M, Ghomi H and Ghorannevis M 2010 J. Fusion Energy 29 365 doi: 10.1007/s10894-010-9289-8
    [21]
    Liu J Y, Wang Z X and Wang X G 2003 Phys. Plasmas 10 3032 doi: 10.1063/1.1584048
    [22]
    Alterkop B 2004 J. Appl. Phys. 95 1650 doi: 10.1063/1.1645671
    [23]
    Sharma G et al 2020 Phys. Scr. 95 035605 doi: 10.1088/1402-4896/ab5548
    [24]
    Driouch I, Chatei H and El Bojaddaini M 2015 J. Plasma Phys. 81 905810104 doi: 10.1017/S0022377814000403
    [25]
    Valentini H B and Kaiser D 2014 Plasma Sources Sci. Technol. 23 015004 doi: 10.1088/0963-0252/23/1/015004
    [26]
    Driouch I and Chatei H 2017 Eur. Phys. J. D 71 9 doi: 10.1140/epjd/e2016-70111-0
    [27]
    Yasserian K, Aslaninejad M and Ghoranneviss M 2009 Phys. Plasmas 16 023504 doi: 10.1063/1.3077304
    [28]
    Gyergyek T and Kovačič J 2015 Phys. Plasmas 22 043502 doi: 10.1063/1.4916318
    [29]
    Sarma B K et al 1998 Phys. Lett. A 244 127 doi: 10.1016/S0375-9601(98)00259-X
    [30]
    Bailung H et al 2004 Pramana 62 1091 doi: 10.1007/BF02705255
    [31]
    Jin F et al 2013 High Voltage Eng. 39 1596 (in Chinese) doi: 10.3969/j.issn.1003-6520.2013.07.008
    [32]
    Sparavigna A and Wolf R A 2006 Czech. J. Phys. 56 B1062 doi: 10.1007/s10582-006-0327-8
    [33]
    Akishev Y S et al 2000 Plasma Phys. Rep. 26 157 doi: 10.1134/1.952826
    [34]
    Chen J H and Davidson J H 2002 Plasma Chem. Plasma Process. 22 199 doi: 10.1023/A:1014851908545
    [35]
    Tachibana K 1986 Phys. Rev. A 34 1007 doi: 10.1103/PhysRevA.34.1007
    [36]
    Phelps A V 1991 J. Phys. Chem. Ref. Data 20 557 doi: 10.1063/1.555889
    [37]
    Phelps A V 1994 J. Appl. Phys. 76 747 doi: 10.1063/1.357820
    [38]
    Adhikari S, Moulick R and Goswami K S 2017 Phys. Plasmas 24 083501 doi: 10.1063/1.4994535
    [39]
    Crespo R M 2018 Phys. Plasmas 25 063509 doi: 10.1063/1.5025828
    [40]
    Moulick R, Adhikari S and Goswami K S 2019 Phys. Plasmas 26 043512 doi: 10.1063/1.5090537
    [41]
    Moulick R, Adhikari S and Goswami K S 2017 Phys. Plasmas 24 114501 doi: 10.1063/1.4994261
    [42]
    Tsallis C, Mendes R and Plastino A R 1998 Phys. A: Stat. Mech. Appl. 261 534 doi: 10.1016/S0378-4371(98)00437-3
    [43]
    Cáceres M O 1999 Braz. J. Phys. 29 125 doi: 10.1590/S0103-97331999000100011
    [44]
    Borgohain D R and Saharia K 2018 Plasma Phys. Rep. 44 137 doi: 10.1134/S1063780X1801004X
    [45]
    Hatami M M and Tribeche M 2018 IEEE Trans. Plasma Sci. 46 868 doi: 10.1109/TPS.2018.2805678
    [46]
    Chen L et al 2021 Acta Phys. Sin. 70 245201 (in Chinese) doi: 10.7498/aps.70.20211061
    [47]
    Liu J M et al 1994 Phys. Rev. Lett. 72 2717 doi: 10.1103/PhysRevLett.72.2717
    [48]
    Gurovich V T et al 2006 Phys. Plasmas 13 073506 doi: 10.1063/1.2226982
    [49]
    Hori T et al 1996 Appl. Phys. Lett. 69 3683 doi: 10.1063/1.117188
    [50]
    Tsallis C 1988 J. Stat. Phys. 52 479 doi: 10.1007/BF01016429
    [51]
    El Ghani O, Driouch I and Chatei H 2019 Contrib. Plasma Phys. 59 e201900030 doi: 10.1002/ctpp.201900030
    [52]
    Hatami M M 2015 Phys. Plasmas 22 013508
    [53]
    Safa N N, Ghomi H and Niknam A R 2015 J. Plasma Phys. 81 905810303 doi: 10.1017/S0022377814000981
    [54]
    Liu Y, Liu S Q and Zhou L 2013 Phys. Plasmas 20 043702 doi: 10.1063/1.4798529
    [55]
    Du J L 2004 Phys. Lett. A 329 262 doi: 10.1016/j.physleta.2004.07.010
    [56]
    Borgohain D R and Saharia K 2018 Phys. Plasmas 25 032122 doi: 10.1063/1.5005582
    [57]
    Dhawan R, Kumar M and Malik H K 2020 Phys. Plasmas 27 063515 doi: 10.1063/5.0003242
    [58]
    Tsallis C and Institute S F 2009 Braz. J. Phys. 39 337 doi: 10.1590/S0103-97332009000400002
    [59]
    Silva R Jr, Plastino A R and Lima J A S 1998 Phys. Lett. A 249 401 doi: 10.1016/S0375-9601(98)00710-5
    [60]
    Sarris E T et al 1981 Geophys. Res. Lett. 8 349 doi: 10.1029/GL008i004p00349
    [61]
    Gosling J T et al 1981 J. Geophys. Res. Space Phys. 86 547 doi: 10.1029/JA086iA02p00547
    [62]
    Lima J A S, Silva R Jr and Santos J 2000 Phys. Rev. E 61 3260 doi: 10.1103/PhysRevE.61.3260
    [63]
    Basnet S, Patel A and Khanal R 2020 Plasma Phys. Control. Fusion 62 115011 doi: 10.1088/1361-6587/abb0f7
    [64]
    El Bojaddaini M and Chatei H 2020 Mater. Today Proc. 24 37 doi: 10.1016/j.matpr.2019.07.441
    [65]
    El Bojaddaini M and Chatei H 2020 Eur. Phys. J. Plus 135 680 doi: 10.1140/epjp/s13360-020-00699-9
    [66]
    Moon J D, Lee G T and Chung S H 1999 IEEE Trans. Ind. Appl. 35 1198 doi: 10.1109/28.793385
    [67]
    Xu D X et al 2003 J. Electrostat. 57 217 doi: 10.1016/S0304-3886(02)00161-4
    [68]
    Xu D X et al 2007 J. Electrostat. 65 101 doi: 10.1016/j.elstat.2006.07.007
    [69]
    Lowke J J and Davies D K 1977 J. Appl. Phys. 48 4991 doi: 10.1063/1.323606
    [70]
    Dhawan R and Malik H K 2021 Plasma Sci. Technol. 23 045402 doi: 10.1088/2058-6272/abeb03
    [71]
    Zou X et al 2021 Acta Phys. Sin. 70 015201 (in Chinese) doi: 10.7498/aps.70.20200794
    [72]
    Gougam L A and Tribeche M 2011 Phys. Plasmas 18 062102 doi: 10.1063/1.3577599
  • Related Articles

    [1]Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52
    [2]Xifeng CAO (曹希峰), Guanrong HANG (杭观荣), Hui LIU (刘辉), Yingchao MENG (孟颖超), Xiaoming LUO (罗晓明), Daren YU (于达仁). Hybrid–PIC simulation of sputtering product distribution in a Hall thruster[J]. Plasma Science and Technology, 2017, 19(10): 105501. DOI: 10.1088/2058-6272/aa7940
    [3]ZHOU Qiujiao (周秋娇), QI Bing (齐冰), HUANG Jianjun (黄建军), PAN Lizhu (潘丽竹), LIU Ying (刘英). Measurement of Electron Density and Ion Collision Frequency with Dual Assisted Grounded Electrode DBD in Atmospheric Pressure Helium Plasma Jet[J]. Plasma Science and Technology, 2016, 18(4): 400-405. DOI: 10.1088/1009-0630/18/4/12
    [4]HAN Qing (韩卿), WANG Jing (王敬), ZHANG Lianzhu (张连珠). PIC/MCC Simulation of Radio Frequency Hollow Cathode Discharge in Nitrogen[J]. Plasma Science and Technology, 2016, 18(1): 72-78. DOI: 10.1088/1009-0630/18/1/13
    [5]LIU Wenzheng(刘文正), WANG Hao(王浩), ZHANG Dejin(张德金), ZHANG Jian(张坚). Study on the Discharge Characteristics of a Coaxial Pulsed Plasma Thruster[J]. Plasma Science and Technology, 2014, 16(4): 344-351. DOI: 10.1088/1009-0630/16/4/08
    [6]LIU Xin (刘欣), LI Shengli (李胜利), LI Mingshu (李铭书). Factors Influencing the Electron Yield of Needle-Ring Pulsed Corona Discharge Electron Source for Negative Ion Mobility Spectrometer[J]. Plasma Science and Technology, 2013, 15(12): 1215-1220. DOI: 10.1088/1009-0630/15/12/10
    [7]LIU Mingping (刘明萍), LIU Sanqiu (刘三秋), HE Jun (何俊), LIU Jie (刘杰). Electron Acceleration During the Mode Transition from Laser Wakefield to Plasma Wakefield Acceleration with a Dense-Plasma Wall[J]. Plasma Science and Technology, 2013, 15(9): 841-844. DOI: 10.1088/1009-0630/15/9/01
    [8]Hiroyuki TOBARI, Masaki TANIGUCHI, Mieko KASHIWAGI, Masayuki DAIRAKU, Naotaka UMEDA, Haruhiko YAMANAKA, Kazuki TSUCHIDA, Jumpei TAKEMOTO, Kazuhiro WATANABE, Takashi INOUE, Keishi SAKAMOTO. Vacuum Insulation and Achievement of 980 keV, 185 A/m2 H- Ion Beam Acceleration at JAEA for the ITER Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(2): 179-183. DOI: 10.1088/1009-0630/15/2/21
    [9]DENG Aihua (邓爱华), LIU Mingwei (刘明伟), LIU Jiansheng (刘建胜), LU Xiaoming (陆效明), XIA Changquan (夏长权), XU Jiancai (徐建彩), ANG Cheng (王成), SHEN Baifei (沈百飞), LI Ruxin (李儒新), et al. Generation of Preformed Plasma Channel for GeV-Scaled Electron Accelerator by Ablative Capillary Discharges[J]. Plasma Science and Technology, 2011, 13(3): 362-366.
    [10]B. F. MOHAMED, A. M. GOUDA. Electron Acceleration by Microwave Radiation Inside a Rectangular Waveguide[J]. Plasma Science and Technology, 2011, 13(3): 357-361.
  • Cited by

    Periodical cited type(18)

    1. Alrowaily, A.W., Khalid, M., Kabir, A. et al. On the electrostatic solitary waves in an electron–positron–ion plasma with Cairns–Tsallis distributed electrons. Rendiconti Lincei, 2025. DOI:10.1007/s12210-025-01304-w
    2. Khalid, M., Ata-ur-Rahman, Minhas, R., Alotaibi, B.M. et al. High-Frequency Electrostatic Cnoidal Waves in Unmagnetized Plasma. Brazilian Journal of Physics, 2024, 54(1): 20. DOI:10.1007/s13538-023-01369-8
    3. El-Nabulsi, R.A.. A Fractional Model to Study Soliton in Presence of Charged Space Debris at Low-Earth Orbital Plasma Region. IEEE Transactions on Plasma Science, 2024, 52(9): 4671-4693. DOI:10.1109/TPS.2024.3463178
    4. Nazziwa, L., Habumugisha, I., Jurua, E. Obliquely nonlinear solitary waves in magnetized electron–positron–ion plasma. Indian Journal of Physics, 2024. DOI:10.1007/s12648-024-03329-7
    5. Hammad, M.A., Khalid, M., Alrowaily, A.W. et al. Ion-acoustic cnoidal waves in a non-Maxwellian plasma with regularized κ-distributed electrons. AIP Advances, 2023, 13(10): 105127. DOI:10.1063/5.0172991
    6. Khalid, M., Kabir, A., Jan, S.U. et al. Coexistence of Compressive and Rarefactive Positron-Acoustic Electrostatic Excitations in Unmagnetized Plasma with Kaniadakis Distributed Electrons and Hot Positrons. Brazilian Journal of Physics, 2023, 53(3): 66. DOI:10.1007/s13538-023-01266-0
    7. Khalid, M., Kabir, A., Jan, L.S. Qualitative analysis of nonlinear electrostatic excitations in magnetoplasma with pressure anisotropy. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2023, 78(4): 339-345. DOI:10.1515/zna-2022-0312
    8. Khalid, M., Elghmaz, E.A., Shamshad, L. Periodic Waves in Unmagnetized Nonthermal Dusty Plasma with Cairns Distribution. Brazilian Journal of Physics, 2023, 53(1): 2. DOI:10.1007/s13538-022-01209-1
    9. Alyousef, H.A., Khalid, M., Ata-ur-Rahman, El-Tantawy, S.A. Large Amplitude Electrostatic (Un)modulated Excitations in Anisotropic Magnetoplasmas: Solitons and Freak Waves. Brazilian Journal of Physics, 2022, 52(6): 202. DOI:10.1007/s13538-022-01199-0
    10. Alyousef, H.A., Khalid, M., Kabir, A. Nonlinear periodic structures in magnetoplasma with nonthermal electrons and positrons. EPL, 2022, 139(5): 53002. DOI:10.1209/0295-5075/ac882c
    11. Khalid, M., Naeem, S.N., Irshad, M. et al. Nonlinear Periodic Structures in Fully Relativistic Degenerate Plasma. Brazilian Journal of Physics, 2022, 52(4): 140. DOI:10.1007/s13538-022-01130-7
    12. Khalid, M., Khan, M., Ata-ur-Rahman, Kabir, A. et al. Nonlinear Periodic Structures in Nonthermal Magnetoplasma with the Presence of Pressure Anisotropy. Brazilian Journal of Physics, 2022, 52(4): 109. DOI:10.1007/s13538-022-01100-z
    13. Khalid, M., Ullah, A., Kabir, A. et al. Oblique propagation of ion-acoustic solitary waves in magnetized electron-positron-ion plasma with Cairns distribution. EPL, 2022, 138(6): 63001. DOI:10.1209/0295-5075/ac765c
    14. Khalid, M., Kabir, A., Irshad, M. Ion-scale solitary waves in magnetoplasma with non-thermal electrons. EPL, 2022, 138(5): 53002. DOI:10.1209/0295-5075/ac668e
    15. Khalid, M., Khan, M., Rahman, A. et al. Nonlinear periodic structures in a magnetized plasma with Cairns distributed electrons. Indian Journal of Physics, 2022, 96(6): 1783-1790. DOI:10.1007/s12648-021-02108-y
    16. Mehdipoor, M., Asri, M. Physical aspects of cnoidal waves in non-thermal electron-beam plasma systems. Physica Scripta, 2022, 97(3): 035602. DOI:10.1088/1402-4896/ac5487
    17. Khalid, M., Khan, M., Ur-Rahman, A. et al. Ion acoustic solitary waves in magnetized anisotropic nonextensive plasmas. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2022, 77(2): 125-130. DOI:10.1515/zna-2021-0262
    18. Khalid, M., Khan, M., Muddusir, Ata-Ur-Rahman, Irshad, M. Periodic and localized structures in dusty plasma with Kaniadakis distribution. Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences, 2021, 76(10): 891-897. DOI:10.1515/zna-2021-0164

    Other cited types(0)

Catalog

    Figures(9)

    Article views (67) PDF downloads (150) Cited by(18)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return