Advanced Search+
Shuhan GAO, Xucheng WANG, Yuantao ZHANG. Modeling study on different discharge characteristics in pulsed discharges with and without barriers on electrodes[J]. Plasma Science and Technology, 2023, 25(5): 055401. DOI: 10.1088/2058-6272/aca86d
Citation: Shuhan GAO, Xucheng WANG, Yuantao ZHANG. Modeling study on different discharge characteristics in pulsed discharges with and without barriers on electrodes[J]. Plasma Science and Technology, 2023, 25(5): 055401. DOI: 10.1088/2058-6272/aca86d

Modeling study on different discharge characteristics in pulsed discharges with and without barriers on electrodes

More Information
  • Corresponding author:

    Yuantao ZHANG, E-mail: ytzhang@sdu.edu.cn

  • Received Date: August 19, 2022
  • Revised Date: November 29, 2022
  • Accepted Date: December 01, 2022
  • Available Online: December 05, 2023
  • Published Date: February 20, 2023
  • High-pressure nanosecond pulsed discharges (NPDs) have attracted increasing attention in recent years due to their wide potential applications. In this study, a barrier-free NPD in pure helium plasma at 120 Torr was numerically investigated by a one-dimensional self-consistent fluid model, and its current–voltage characteristics show very different behaviors from those in pulsed dielectric barrier discharges (DBDs), indicating an entirely distinctive discharge evolution in pulsed discharges with or without barriers on electrodes. Without the control of barriers, the computational data suggest that the discharge current increases very sharply during the plateau phase of the pulsed voltage and reaches its peak value at approximately the instant when the pulsed voltage starts to drop, together with a gradual reduction in the sheath thickness and an increase in electric field in the sheath region, which is in good agreement with experimental observations. By increasing the voltage plateau width and repetition frequency, the discharge current density from the simulation can be substantially enhanced, which cannot be observed in conventional pulsed DBDs, and the spatial distributions of the electric field and charged particles are given to unravel the underlying physics. From the computational data, the distinctive discharge characteristics in barrier-free NPDs are deeply understood, and could be further optimized by tailoring the waveform of the pulsed voltage to obtain desirable plasmas for applications.

  • This work was supported by National Natural Science Foundation of China (No. 11975142).

    Data availability statement

    The data that support the findings of this study are available from the corresponding author upon reasonable request.

  • [1]
    Janasek D, Franzke J and Manz A 2006 Nature 442 374 doi: 10.1038/nature05059
    [2]
    Roth J R 2003 Phys. Plasmas 10 2117 doi: 10.1063/1.1564823
    [3]
    Roth J R, Nourgostar S and Bonds T A 2007 IEEE Trans. Plasma Sci. 35 233 doi: 10.1109/TPS.2007.892711
    [4]
    Iza F, Lee J K and Kong M G 2007 Phys. Rev. Lett. 99075004 doi: 10.1103/PhysRevLett.99.075004
    [5]
    Iza F et al 2008 Plasma Process. Polym. 5 322 doi: 10.1002/ppap.200700162
    [6]
    Walsh J L et al 2008 Appl. Phys. Lett. 93221505 doi: 10.1063/1.3043449
    [7]
    Vidmar R J 1990 IEEE Trans. Plasma Sci. 18 733 doi: 10.1109/27.57528
    [8]
    Ostrikov K 2005 Rev. Mod. Phys. 77 489 doi: 10.1103/RevModPhys.77.489
    [9]
    Tarasenko V F 2006 Appl. Phys. Lett. 88081501 doi: 10.1063/1.2176866
    [10]
    Moon S Y, Han J W and Choe W 2006 Thin Solid Films 506-507 355 doi: 10.1016/j.tsf.2005.08.081
    [11]
    Walsh J L and Kong M G 2007 Appl. Phys. Lett. 91251504 doi: 10.1063/1.2825576
    [12]
    Wang X C et al 2022 Phys. Plasmas 29023505 doi: 10.1063/5.0080735
    [13]
    Laroussi M 2005 Plasma Process. Polym. 2 391 doi: 10.1002/ppap.200400078
    [14]
    Chu P K 2007 IEEE Trans. Plasma Sci. 35 181 doi: 10.1109/TPS.2006.888587
    [15]
    Fridman G et al 2008 Plasma Process. Polym. 5 503 doi: 10.1002/ppap.200700154
    [16]
    Farouk T et al 2008 Plasma Sources Sci. Technol. 17035015 doi: 10.1088/0963-0252/17/3/035015
    [17]
    Zhang Y T et al 2013 IEEE Trans. Plasma Sci. 41 414 doi: 10.1109/TPS.2013.2244912
    [18]
    He J et al 2013 Plasma Sources Sci. Technol. 22035008 doi: 10.1088/0963-0252/22/3/035008
    [19]
    Kwon H C et al 2014 Phys. Plasmas 21033511 doi: 10.1063/1.4870005
    [20]
    Gao S H, Cheng R G and Zhang Y T 2022 IEEE Trans. Plasma Sci. 50 609 doi: 10.1109/TPS.2022.3147853
    [21]
    Becker K H, Schoenbach K H and Eden J G 2006 J. Phys. D: Appl. Phys. 39 R55 doi: 10.1088/0022-3727/39/3/R01
    [22]
    Wang Q, Economou D J and Donnelly V M 2006 J. Appl. Phys. 100023301 doi: 10.1063/1.2214591
    [23]
    Gao S H, Wang X C and Zhang Y T 2020 Acta Phys. Sin. 69115204(in Chinese) doi: 10.7498/aps.69.20191853
    [24]
    Wang X L, Gao S H and Zhang Y T 2021 Phys. Plasmas 28073511 doi: 10.1063/5.0048966
    [25]
    Iza F, Walsh J L and Kong M G 2009 IEEE Trans. Plasma Sci. 37 1289 doi: 10.1109/TPS.2009.2014766
    [26]
    Pai D Z et al 2009 Plasma Sources Sci. Technol. 18045030 doi: 10.1088/0963-0252/18/4/045030
    [27]
    Huang B D et al 2015 J. Phys. D: Appl. Phys. 48125202 doi: 10.1088/0022-3727/48/12/125202
    [28]
    Huang B D et al 2016 J. Phys. D: Appl. Phys. 49045202 doi: 10.1088/0022-3727/49/4/045202
    [29]
    Lu X P and Laroussi M 2008 Appl. Phys. Lett. 92051501 doi: 10.1063/1.2840194
    [30]
    Gao S H, Wang X L and Zhang Y T 2021 Phys. Plasmas 28113501 doi: 10.1063/5.0061546
    [31]
    Zhang Y T and He J 2013 Phys. Plasmas 20013502 doi: 10.1063/1.4775729
    [32]
    Martens T, Bogaerts A and van Dijk J 2010 Appl. Phys. Lett. 96131503 doi: 10.1063/1.3315881
    [33]
    Donkó Z et al 2011 Appl. Phys. Lett. 98251502 doi: 10.1063/1.3601486
    [34]
    Huang X J et al 2011 Phys. Plasmas 18033503 doi: 10.1063/1.3566005
    [35]
    Gong W W et al 2014 IEEE Trans. Plasma Sci. 42 2868 doi: 10.1109/TPS.2014.2323254
    [36]
    Uchida G, Takenaka K and Setsuhara Y 2015 J. Appl. Phys. 117153301 doi: 10.1063/1.4918546
    [37]
    Laroussi M et al 2004 J. Appl. Phys. 96 3028 doi: 10.1063/1.1777392
    [38]
    Lu X P and Laroussi M 2006 J. Appl. Phys. 100063302 doi: 10.1063/1.2349475
    [39]
    Ayan H et al 2008 IEEE Trans. Plasma Sci. 36 504 doi: 10.1109/TPS.2008.917947
    [40]
    Lu X P et al 2009 IEEE Trans. Plasma Sci. 37 647 doi: 10.1109/TPS.2009.2015321
    [41]
    Shao T et al 2011 IEEE Trans. Plasma Sci. 39 2062 doi: 10.1109/TPS.2011.2131686
    [42]
    Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 88171501 doi: 10.1063/1.2198100
    [43]
    Song S T et al 2012 Phys. Plasmas 19123508 doi: 10.1063/1.4772780
    [44]
    Walsh J L, Shi J J and Kong M G 2006 Appl. Phys. Lett. 89161505 doi: 10.1063/1.2361274
    [45]
    Simeni M S et al 2021 Plasma Sources Sci. Technol. 30055004 doi: 10.1088/1361-6595/abf320
    [46]
    Macheret S O, Shneider M N and Miles R B 2002 IEEE Trans. Plasma Sci. 30 1301 doi: 10.1109/TPS.2002.802142
    [47]
    Lu X P et al 2011 SCI. SIN. Phys. Mech. Astron. 41 801(in Chinese) doi: 10.1360/132010-1348
    [48]
    Shon J W and Kushner M J 1994 J. Appl. Phys. 75 1883 doi: 10.1063/1.356334
    [49]
    Rauf S and Kushner M J 1999 J. Appl. Phys. 85 3460 doi: 10.1063/1.369703
    [50]
    Deloche R et al 1976 Phys. Rev. A 13 1140 doi: 10.1103/PhysRevA.13.1140
    [51]
    Kulikovsky A A 1994 J. Phys. D: Appl. Phys. 27 2556 doi: 10.1088/0022-3727/27/12/017
    [52]
    Zhang Y T, Wang D Z and Kong M G 2006 J. Appl. Phys. 100063304 doi: 10.1063/1.2345463
    [53]
    Stewart R A and Lieberman M A 1991 J. Appl. Phys. 70 3481 doi: 10.1063/1.349240
    [54]
    Zhang Y T and Wang Y H 2018 Phys. Plasmas 25023509 doi: 10.1063/1.5011949
    [55]
    Yuan X H and Raja L L 2003 IEEE Trans. Plasma Sci. 31 495 doi: 10.1109/TPS.2003.815479
    [56]
    Scharfetter D L and Gummel H K 1969 IEEE Trans. Electron Devices 16 64 doi: 10.1109/T-ED.1969.16566
    [57]
    Kulikovsky A A 1995 J. Comput. Phys. 119 149 doi: 10.1006/jcph.1995.1123
    [58]
    Ellis H W et al 1978 At. Data Nucl. Data Tables 22 179 doi: 10.1016/0092-640X(78)90014-1
    [59]
    Lu X P and Laroussi M 2006 J. Phys. D: Appl. Phys. 39 1127 doi: 10.1088/0022-3727/39/6/018
    [60]
    Lu X P et al 2008 J. Appl. Phys. 104053309 doi: 10.1063/1.2977674
    [61]
    Gottscho R A et al 1989 Phys. Rev. A 40 6407 doi: 10.1103/PhysRevA.40.6407
    [62]
    Boeuf J P and Pitchford L C 1995 J. Phys. D: Appl. Phys. 28 2083 doi: 10.1088/0022-3727/28/10/013
    [63]
    Schulze J et al 2008 J. Phys. D: Appl. Phys. 41105214 doi: 10.1088/0022-3727/41/10/105214
    [64]
    Simeni M S et al 2017 J. Phys. D: Appl. Phys. 50184002 doi: 10.1088/1361-6463/aa6668
    [65]
    Tarasenko V 2020 Plasma Sources Sci. Technol. 29034001 doi: 10.1088/1361-6595/ab5c57
    [66]
    Černák M, Bessières D and Paillol J 2011 J. Appl. Phys. 110053303 doi: 10.1063/1.3630015
    [67]
    Chen B et al 2011 IEEE Trans. Plasma Sci. 39 1949 doi: 10.1109/TPS.2011.2162345
    [68]
    Uchida G et al 2014 Japan. J. Appl. Phys. 53 11RA08 doi: 10.7567/JJAP.53.11RA08
    [69]
    Huang B D et al 2014 J. Phys. D: Appl. Phys. 47422003 doi: 10.1088/0022-3727/47/42/422003
    [70]
    Colonna G, D'Ammando G and Pietanza L D 2016 Plasma Sources Sci. Technol. 25054001 doi: 10.1088/0963-0252/25/5/054001
    [71]
    Yu S Z et al 2016 Phys. Plasmas 23023510 doi: 10.1063/1.4942225
    [72]
    Walsh J L and Kong M G 2006 Appl. Phys. Lett. 89231503 doi: 10.1063/1.2397570
  • Related Articles

    [1]Chengxian PAN (潘呈献), Zhengming SHI (施政铭), Qianhan HAN (韩乾翰), Ying GUO (郭颖), Jianjun SHI (石建军). Numerical simulation of atmospheric pulse-modulated radio-frequency glow discharge ignition characteristics assisted by a pulsed discharge[J]. Plasma Science and Technology, 2020, 22(1): 15405-015405. DOI: 10.1088/2058-6272/ab4d7d
    [2]Linsheng WEI(魏林生), Xin LIANG (梁馨), Yafang ZHANG (章亚芳). Numerical investigation on the effect of gas parameters on ozone generation in pulsed dielectric barrier discharge[J]. Plasma Science and Technology, 2018, 20(12): 125505. DOI: 10.1088/2058-6272/aadca6
    [3]Zhoutao SUN (孙洲涛), Wen YAN (晏雯), Longfei JI (季龙飞), Zhenhua BI (毕振华), Ying SONG (宋颖), Dongping LIU (刘东平). Numerical study on an atmospheric pressure helium discharge propagating in a dielectric tube: influence of tube diameter[J]. Plasma Science and Technology, 2018, 20(8): 85401-085401. DOI: 10.1088/2058-6272/aab3d2
    [4]Gui LI (李桂), Muyang QIAN (钱沐杨), Sanqiu LIU (刘三秋), Huaying CHEN (陈华英), Chunsheng REN (任春生), Dezhen WANG (王德真). A numerical simulation study on active species production in dense methane-air plasma discharge[J]. Plasma Science and Technology, 2018, 20(1): 14004-014004. DOI: 10.1088/2058-6272/aa8f3c
    [5]Yinan WANG (王一男), Yue LIU (刘悦). Numerical study on characteristics of radiofrequency discharge at atmospheric pressure in argon with small admixtures of oxygen[J]. Plasma Science and Technology, 2017, 19(7): 75402-075402. DOI: 10.1088/2058-6272/aa6156
    [6]WANG Xiaolong (王晓龙), TAN Zhenyu (谭震宇), PAN Jie (潘杰), CHEN Xinxian (陈歆羡). Effects of Oxygen Concentration on Pulsed Dielectric Barrier Discharge in Helium-Oxygen Mixture at Atmospheric Pressure[J]. Plasma Science and Technology, 2016, 18(8): 837-843. DOI: 10.1088/1009-0630/18/8/08
    [7]WANG Yanhui (王艳辉), YE Huanhuan (叶换换), ZHANG Jiao (张佼), WANG Qi (王奇), ZHANG Jie (张杰), WANG Dezhen (王德真). Numerical Study of Pulsed Dielectric Barrier Discharge at Atmospheric Pressure Under the Needle-Plate Electrode Configuration[J]. Plasma Science and Technology, 2016, 18(5): 478-484. DOI: 10.1088/1009-0630/18/5/06
    [8]WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09
    [9]LIU Yuanye (刘远野), HE Feng (何锋), ZHAO Xiaofei (赵晓菲), OUYANG Jiting (欧阳吉庭). Evolution of Striation in Pulsed Glow Discharges[J]. Plasma Science and Technology, 2016, 18(1): 30-34. DOI: 10.1088/1009-0630/18/1/06
    [10]A. K. FEROUANI, M. LEMERINI, L. MERAD, M. HOUALEF. Numerical Modelling Point-to-Plane of Negative Corona Discharge in N2 Under Non-Uniform Electric Field[J]. Plasma Science and Technology, 2015, 17(6): 469-474. DOI: 10.1088/1009-0630/17/6/06
  • Cited by

    Periodical cited type(9)

    1. Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261
    2. Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992
    3. Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557
    4. Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w
    5. Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852
    6. Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337
    7. Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710
    8. Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981
    9. Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488

    Other cited types(0)

Catalog

    Figures(8)  /  Tables(1)

    Article views (40) PDF downloads (145) Cited by(9)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return