Advanced Search+
Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136
Citation: Shijie HUANG, Yi LIU, Yong ZHAO, Youlai XU, Fuchang LIN, Hua LI, Qin ZHANG, Liuxia LI. Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model[J]. Plasma Science and Technology, 2023, 25(6): 065502. DOI: 10.1088/2058-6272/acb136

Stress wave analysis of high-voltage pulse discharge rock fragmentation based on plasma channel impedance model

More Information
  • Corresponding author:

    Yi LIU, E-mail: yiliu@hust.edu.cn

  • Received Date: October 05, 2022
  • Revised Date: January 05, 2023
  • Accepted Date: January 06, 2023
  • Available Online: December 05, 2023
  • Published Date: March 01, 2023
  • High-voltage pulse discharge (HVPD) rock fragmentation controls a plasma channel forming inside the rock by adjusting the electrical parameters, electrode type, etc. In this work, an HVPD rock fragmentation test platform was built and the test waveforms were measured. Considering the effects of temperature, channel expansion and electromagnetic radiation, the impedance model of the plasma channel in the rock was established. The parameters and initial values of the model were determined by an iterative computational process. The model calculation results can reasonably characterize the development of the plasma channel in the rock and estimate the shock wave characteristics. Based on the plasma channel impedance model, the temporal and spatial distribution characteristics of the radial stress and tangential stress in the rock were calculated, and the rock fragmentation effect of the HVPD was analyzed.

  • The authors gratefully acknowledge the support of National Natural Science Foundation of China (No. 52177144).

  • [1]
    Liu Y et al 2017 Phys. Plasmas 24 043510 doi: 10.1063/1.4980848
    [2]
    Andres U et al 2001 Powder Technol. 114 40 doi: 10.1016/S0032-5910(00)00260-6
    [3]
    Biela J et al 2009 IEEE Trans. Dielectr. Electr. Insul. 16 1093 doi: 10.1109/TDEI.2009.5211860
    [4]
    Liu X H, Liu S Y and Ji H F 2015 Powder Technol. 286 181 doi: 10.1016/j.powtec.2015.07.044
    [5]
    Shi X M et al 2020 Geomech. Geophys. Geo-Energy Geo-Resour. 6 25 doi: 10.1007/s40948-020-00143-3
    [6]
    Ma Z J et al 2022 IEEE Trans. Antennas Propag. 70 4243 doi: 10.1109/TAP.2021.3138425
    [7]
    Lisitsyn I V et al 1999 Drilling and demolition of rocks by pulsed power 12th IEEE Int. Pulsed Power Conf. (Monterey, CA: IEEE) (https://doi.org/10.1109/PPC.1999.825439)
    [8]
    Razavian S M et al 2015 Int. J. Min. Sci. Technol. 25 473 doi: 10.1016/j.ijmst.2015.03.023
    [9]
    Liu S W et al 2019 Phys. Plasmas 26 023522 doi: 10.1063/1.5064847
    [10]
    Li C P et al 2019 Shock Vib. 2019 7149680 doi: 10.1155/2019/7149680
    [11]
    Ushakov V Y, Vajov V F and Zinoviev N T 2019 Electro-Discharge Technology for Drilling Wells and Concrete Destruction (Berlin: Springer)
    [12]
    Ito M et al 2009 Int. J. Miner. Process. 92 7 doi: 10.1016/j.minpro.2009.02.007
    [13]
    Dai J 2002 Dynamic Behaviors and Blasting Theory of Rock (Beijing: Metallurgical Industry Press) (in Chinese)
    [14]
    Burkin V V, Kuznetsova N S and Lopatin V V 2009 J. Phys. D: Appl. Phys. 42 185204 doi: 10.1088/0022-3727/42/18/185204
    [15]
    Burkin V V, Kuznetsova N S and Lopatin V V 2009 J. Phys. D: Appl. Phys. 42 235209 doi: 10.1088/0022-3727/42/23/235209
    [16]
    Cho S H et al 2016 Rock Mech. Rock Eng. 49 3841 doi: 10.1007/s00603-016-1031-z
    [17]
    Kuznetsova N S, Lopatin V V and Yudin A S 2014 J. Phys. Conf. Ser. 552 012029 doi: 10.1088/1742-6596/552/1/012029
    [18]
    Andres U, Timoshkin I and Soloviev M 2001 Miner. Process. Extr. Metall. 110 149 doi: 10.1179/mpm.2001.110.3.149
    [19]
    Bluhm H et al 2000 IEEE Trans. Dielectr. Electr. Insul. 7 625 doi: 10.1109/94.879358
    [20]
    Bluhm H 2006 Pulsed Power Systems (Berlin: Springer)
    [21]
    Kushner M J, Kimura W D and Byron S R 1985 J. Appl. Phys. 58 1744 doi: 10.1063/1.336023
    [22]
    Zhao Y et al 2022 J. Appl. Phys. 131 083301 doi: 10.1063/5.0079162
    [23]
    Robinson J W 1973 J. Appl. Phys. 44 76 doi: 10.1063/1.1661944
    [24]
    Frisch D H, Smith J H and Friedman F L 1963 Am. J. Phys. 31 889 doi: 10.1119/1.1969154
    [25]
    Kratel A W H 1996 Pulsed power discharges in water PhD Thesis California Institute of Technology, Pasadena, USA
    [26]
    Warne L K, Jorgenson R E and Lehr J M 2005 Resistance of a water spark No. SAND 2005-6994 Albuquerque, Sandia Report Sandia National Laboratories SAND2005-6994
    [27]
    Timoshkin I V et al 2006 J. Phys. D: Appl. Phys. 39 4808 doi: 10.1088/0022-3727/39/22/011
    [28]
    Lisitsyn I V 1998 J. Appl. Phys. 84 6262 doi: 10.1063/1.368946
    [29]
    Inoue H 1999 Jpn. J. Appl. Phys. 38 6502 doi: 10.1143/JJAP.38.6502
    [30]
    Li C P 2018 Energies 11 2461 doi: 10.3390/en11092461
    [31]
    Xiong L L et al 2020 J. Phys. D: Appl. Phys. 53 185502 doi: 10.1088/1361-6463/ab7328
    [32]
    Zhang Y Z et al 2014 Chin. J. Rock Mech. Eng. 33 3144 (in Chinese)
    [33]
    Zhao Y et al 2022 J. Appl. Phys. 132 104901 doi: 10.1063/5.0100904
    [34]
    Stehfest H 1970 Commun. ACM 13 624 doi: 10.1145/355598.362787
    [35]
    Yilmaz O and Unlu T 2013 Tunnell. Undergr. Space Technol. 38 266 doi: 10.1016/j.tust.2013.07.007
    [36]
    Xiong L L et al 2020 J. Phys. D: Appl. Phys. 53 495502 doi: 10.1088/1361-6463/abacee
    [37]
    Zong Q 1994 Blasting 15 (in Chinese) 15
    [38]
    Wang W L 1984 Drilling and Blasting (Beijing: China Coal Industry Publishing House) (in Chinese)
    [39]
    Dai J and Yang Y Q 2000 J. China Univ. Mining Technol. 29 496 (in Chinese) doi: 10.3321/j.issn:1000-1964.2000.05.013
  • Related Articles

    [1]Weiji LIU, Youjian ZHANG, Xiaohua ZHU, Yunxu LUO. The influence of pore characteristics on rock fragmentation mechanism by high-voltage electric pulse[J]. Plasma Science and Technology, 2023, 25(5): 055502. DOI: 10.1088/2058-6272/acab42
    [2]Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d
    [3]Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0
    [4]Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93
    [5]QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13
    [6]LIU Yan (刘燕), YANG Li (杨丽), YANG Gang (杨刚), ZHANG Yanzong (张延宗), ZHANG Xiaohong (张小洪), DENG Shihuai (邓仕槐). Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves[J]. Plasma Science and Technology, 2014, 16(12): 1135-1140. DOI: 10.1088/1009-0630/16/12/09
    [7]WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15
    [8]GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05
    [9]GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09
    [10]LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11
  • Cited by

    Periodical cited type(7)

    1. Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763
    2. Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535
    3. Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3
    4. Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4
    5. Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019
    6. Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b
    7. Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204

    Other cited types(0)

Catalog

    Figures(19)  /  Tables(2)

    Article views (61) PDF downloads (113) Cited by(7)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return