Citation: | Ao GUO, Huibo TANG, Junyi REN, Guangyue HU, San LU. Ion dynamics in laser-produced collisionless perpendicular shock: one-dimensional particle-in-cell simulation[J]. Plasma Science and Technology, 2023, 25(6): 065301. DOI: 10.1088/2058-6272/acb1fa |
Recently, perpendicular shocks have been generated in laboratory experiments by the interaction between a laser-produced supersonic plasma flow and a magnetized ambient plasma. Here, we explore the ion dynamics and the formation of such kinds of shock with a one-dimensional (1D) particle-in-cell simulation model using achievable parameters for laser experiments. A small part of the ambient ions is first reflected by the laser-driven piston. These piston-reflected ions interact with the upstream plasma and form a shock then. By analyzing the contribution of the electric force and the Lorentz force during the reflection, shock-reflected ions are found to be accelerated by two different mechanisms: shock drift acceleration and shock surfing acceleration, where shock drift acceleration is the dominant one. Very few ions are reflected twice by the shock and accelerated to a large velocity, implying that a more energetic population of ions can be observed in future experiments.
This research was funded by the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB41000000), National Natural Science Foundation of China (NSFC) (Nos. 42174181 and 12205298), the Key Research Program of Frontier Sciences CAS (No. QYZDJ-SSW-DQC010).
[1] |
Helder E A et al 2009 Science 325 719 doi: 10.1126/science.1173383
|
[2] |
Decker R B et al 2008 Nature 454 67 doi: 10.1038/nature07030
|
[3] |
Turner D L et al 2018 Nature 561 206 doi: 10.1038/s41586-018-0472-9
|
[4] |
Spreiter J R and Stahara S S 1995 Adv. Space Res. 15 433 doi: 10.1016/0273-1177(94)00128-N
|
[5] |
Bell A R 1978 Mon. Not. Roy. Astron. Soc. 182 147 doi: 10.1093/mnras/182.2.147
|
[6] |
Bogdan T J and Volk H J 1983 Astron. Astrophys. 122 129
|
[7] |
Ellison D C, Moebius E and Paschmann G 1990 Astrophys. J. 352 376 doi: 10.1086/168544
|
[8] |
Fermi E 1949 Phys. Rev. 75 1169 doi: 10.1103/PhysRev.75.1169
|
[9] |
Davis L Jr 1956 Phys. Rev. 101 351 doi: 10.1103/PhysRev.101.351
|
[10] |
Webb G M et al 1995 Astrophys. J. 453 178 doi: 10.1086/176379
|
[11] |
Malkov M A and Völk H J 1998 Adv. Space Res. 21 551 doi: 10.1016/S0273-1177(97)00961-7
|
[12] |
Scholer M and Matsukiyo S 2004 Ann. Geophys. 22 2345 doi: 10.5194/angeo-22-2345-2004
|
[13] |
Sagdeev R Z 1966 Rev. Plasma Phys. 4 23
|
[14] |
Zank G P et al 1996 J. Geophys. Res. Space Phys. 101 457 doi: 10.1029/95JA02860
|
[15] |
Shapiro V D and Üçer D 2003 Planet. Space Sci. 51 665 doi: 10.1016/S0032-0633(03)00102-8
|
[16] |
Hudson P D and Kahn F D 1965 Mon. Not. Roy. Astron. Soc. 131 23 doi: 10.1093/mnras/131.1.23
|
[17] |
Webb G M, Axford W I and Terasawa T 1983 Astrophys. J. 270 537 doi: 10.1086/161146
|
[18] |
Decker R B and Vlahos L 1985 J. Geophys. Res. Space Phys. 90 47 doi: 10.1029/JA090iA01p00047
|
[19] |
Yang Z W et al 2009 J. Geophys. Res. Space Phys. 114 A03111
|
[20] |
Li C K et al 2019 Phys. Rev. Lett. 123 055002 doi: 10.1103/PhysRevLett.123.055002
|
[21] |
Schaeffer D B et al 2019 Phys. Rev. Lett. 122 245001 doi: 10.1103/PhysRevLett.122.245001
|
[22] |
Yao W et al 2021 Nat. Phys. 17 1177 doi: 10.1038/s41567-021-01325-w
|
[23] |
Schaeffer D B et al 2020 Phys. Plasmas 27 042901 doi: 10.1063/1.5123229
|
[24] |
Zhang Y et al 2021 Phys. Plasmas 28 072111 doi: 10.1063/5.0050894
|
[25] |
Huang G, Lu Q M and Wang S 2010 Phys. Plasmas 17 072306 doi: 10.1063/1.3457930
|
[26] |
Yang Z W et al 2013 Phys. Plasmas 20 092116 doi: 10.1063/1.4821825
|
[27] |
Lu Q M et al 2010 J. Geophys. Res. Space Phys. 115 A11208
|
[28] |
Gao X L et al 2017 Geophys. Res. Lett. 44 618 doi: 10.1002/2016GL072251
|
[29] |
Fu X R, Lu Q M and Wang S 2006 Phys. Plasmas 13 012309 doi: 10.1063/1.2164808
|
[30] |
Birdsall C K and Langdon A B 1991 Plasma Physics via Computer Simulation (Boca Raton, FL: CRC Press)
|
[31] |
Tang H B et al 2022 Laboratory observation of ion acceleration via reflection off laser-produced magnetized collisionless shocks(arXiv:2211.03090)
|
[1] | Hafiz Imran Ahmad QAZI, Muhammad Ajmal KHAN, Jianjun HUANG (黄建军). Spatio-temporal evolution characteristics and pattern formation of a gas–liquid interfacial AC current argon discharge plasma with a deionized water electrode[J]. Plasma Science and Technology, 2021, 23(2): 25402-025402. DOI: 10.1088/2058-6272/abd0e2 |
[2] | Li FANG (方丽), Nanjing ZHAO (赵南京), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Yao JIA (贾尧), Xingjiu HUANG (黄行九), Wenqing LIU (刘文清), Jianguo LIU (刘建国). Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes[J]. Plasma Science and Technology, 2019, 21(3): 34002-034002. DOI: 10.1088/2058-6272/aae7dc |
[3] | Yao JIA (贾尧), Nanjing ZHAO (赵南京), Li FANG (方丽), Mingjun MA (马明俊), Deshuo MENG (孟德硕), Gaofang YIN (殷高方), Jianguo LIU (刘建国), Wenqing LIU (刘文清). Online calibration of laser-induced breakdown spectroscopy for detection of heavy metals in water[J]. Plasma Science and Technology, 2018, 20(9): 95503-095503. DOI: 10.1088/2058-6272/aac42f |
[4] | Yang LIU (刘杨), Yue TONG (佟悦), Ying WANG (王莹), Dan ZHANG (张丹), Suyu LI (李苏宇), Yuanfei JIANG (姜远飞), Anmin CHEN (陈安民), Mingxing JIN (金明星). Influence of sample temperature on the expansion dynamics of laser-induced germanium plasma[J]. Plasma Science and Technology, 2017, 19(12): 125501. DOI: 10.1088/2058-6272/aa8acc |
[5] | N C ROY, M R TALUKDER, A N CHOWDHURY. OH and O radicals production in atmospheric pressure air/Ar/H2O gliding arc discharge plasma jet[J]. Plasma Science and Technology, 2017, 19(12): 125402. DOI: 10.1088/2058-6272/aa86a7 |
[6] | Bin HAN (韩滨), D NEENA, Zesong WANG (王泽松), K K KONDAMAREDDY, Na LI (李娜), Wenbin ZUO (左文彬), Shaojian YAN (闫少健), Chuansheng LIU (刘传胜), Dejun FU (付德君). Investigation of structure and mechanical properties of plasma vapor deposited nanocomposite TiBN films[J]. Plasma Science and Technology, 2017, 19(4): 45503-045503. DOI: 10.1088/2058-6272/aa57eb |
[7] | WANG Jingting (王婧婷), CAO Xu (曹栩), ZHANG Renxi (张仁熙), GONG Ting (龚挺), HOU Huiqi (侯惠奇), CHEN Shanping (陈善平), ZHANG Ruina (张瑞娜). Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors[J]. Plasma Science and Technology, 2016, 18(4): 370-375. DOI: 10.1088/1009-0630/18/4/07 |
[8] | YU Youli(於有利), ZHOU Weidong(周卫东), QIAN Huiguo(钱慧国), SU Xuejiao(苏雪娇), REN Ke(任可). Simultaneous Determination of Trace Lead and Chromium in Water Using Laser-Induced Breakdown Spectroscopy and Paper Substrate[J]. Plasma Science and Technology, 2014, 16(7): 683-687. DOI: 10.1088/1009-0630/16/7/09 |
[9] | LI Cong (李聪), ZHANG Jialiang (张家良), YAO Zhi (姚志), WU Xingwei (吴兴伟), et al.. Diagnosis of Electron, Vibrational and Rotational Temperatures in an Ar/N 2 Shock Plasma Jet Produced by a Low Pressure DC Cascade Arc Discharge[J]. Plasma Science and Technology, 2013, 15(9): 875-880. DOI: 10.1088/1009-0630/15/9/08 |
[10] | D. FUKUHARA, S. NAMBA, K. KOZUE, T. YAMASAKI, K. TAKIYAMA. Characterization of a Microhollow Cathode Discharge Plasma in Helium or Air with Water Vapor[J]. Plasma Science and Technology, 2013, 15(2): 129-132. DOI: 10.1088/1009-0630/15/2/10 |