Citation: | Ran LI, Taiwu HUANG, Mingyang YU, Cangtao ZHOU, Shuangchen RUAN. Local wavelength evolution and Landau damping of electrostatic plasma wave driven by an ultra-relativistic electron beam in dense inhomogeneous plasma[J]. Plasma Science and Technology, 2023, 25(7): 075001. DOI: 10.1088/2058-6272/acb31e |
Evolution of an electrostatic plasma wave driven by a low-density ultra-relativistic electron beam in dense inhomogeneous plasma is considered. In particular, the wavelength variation as observed at fixed locations in the plasma is analyzed in terms of the wave characteristics. It is shown that for a negative density gradient, the observed local wavelength decreases monotonically with time, but for a positive density gradient, it first increases and then decreases with time, accompanied by reversal of the wave phase. However, in both cases the local wavelength eventually decreases with time since Landau damping becomes significant as the wavelength becomes of the order of the plasma Debye length. Results from particle-in-cell simulations agree well with theoretical analyses of the wavelength variation.
This work is supported by the National Key R & D Program of China (No. 2016YFA0401100), National Natural Science Foundation of China (Nos. 12175154, 11875092, and 12005149), the Natural Science Foundation of Top Talent of Shenzhen Technology University (Nos. 2019010801001 and 2019020801001). The EPOCH code is used under UK EPSRC contract (EP/G055165/1 and EP/G056803/1).
[1] |
Inoue T 2019 Astrophys. J. 872 46 doi: 10.3847/1538-4357/aafb70
|
[2] |
Bell A R 2004 Mon. Not. Roy. Astron. Soc. 353 550 doi: 10.1111/j.1365-2966.2004.08097.x
|
[3] |
Bret A 2009 Astrophys. J. 699 990 doi: 10.1088/0004-637X/699/2/990
|
[4] |
Donnert J et al 2018 Space Sci. Rev. 214 122 doi: 10.1007/s11214-018-0556-8
|
[5] |
Chen C H K, Klein K G and Howes G G 2019 Nat. Commun. 10 740 doi: 10.1038/s41467-019-08435-3
|
[6] |
Cranmer S R 2014 Astrophys. J. Suppl. Ser. 213 16 doi: 10.1088/0067-0049/213/1/16
|
[7] |
Bowen T A et al 2020 Phys. Rev. Lett. 125 025102 doi: 10.1103/PhysRevLett.125.025102
|
[8] |
Arnold H et al 2021 Phys. Rev. Lett. 126 135101 doi: 10.1103/PhysRevLett.126.135101
|
[9] |
Cranmer S R et al 2015 Phil. Trans. Roy. Soc. A: Math. Phys. Eng. Sci. 373 20140148 doi: 10.1098/rsta.2014.0148
|
[10] |
Zhuravleva I et al 2014 Nature 515 85 doi: 10.1038/nature13830
|
[11] |
Torbert R B et al 2018 Science 362 1391 doi: 10.1126/science.aat2998
|
[12] |
Phan T D et al 2018 Nature 557 202 doi: 10.1038/s41586-018-0091-5
|
[13] |
Glinsky M E 1995 Phys. Plasmas 2 2796 doi: 10.1063/1.871472
|
[14] |
Zhang F et al 2020 Nat. Phys. 16 810 doi: 10.1038/s41567-020-0878-9
|
[15] |
Yang Y et al 2021 Plasma Sci. Technol. 23 015001 doi: 10.1088/2058-6272/abbd37
|
[16] |
Tzeferacos P et al 2018 Nat. Commun. 9 591 doi: 10.1038/s41467-018-02953-2
|
[17] |
Zhang C J et al 2020 Phys. Rev. Lett. 125 255001 doi: 10.1103/PhysRevLett.125.255001
|
[18] |
Swadling G F et al 2020 Phys. Rev. Lett. 124 215001 doi: 10.1103/PhysRevLett.124.215001
|
[19] |
Ruyer C et al 2020 Nat. Phys. 16 983 doi: 10.1038/s41567-020-0913-x
|
[20] |
Kuramitsu Y et al 2018 Nat. Commun. 9 5109 doi: 10.1038/s41467-018-07415-3
|
[21] |
Li C K et al 2019 Phys. Rev. Lett. 123 055002 doi: 10.1103/PhysRevLett.123.055002
|
[22] |
Gremillet L and Lemoine M 2020 Nat. Phys. 16 901 doi: 10.1038/s41567-020-0951-4
|
[23] |
Bake M A, Tang S and Xie B S 2022 Plasma Sci. Technol. 24 095001 doi: 10.1088/2058-6272/ac67bd
|
[24] |
Ke L T et al 2021 Phys. Rev. Lett. 126 214801 doi: 10.1103/PhysRevLett.126.214801
|
[25] |
Caizergues C et al 2020 Nat. Photonics 14 475 doi: 10.1038/s41566-020-0657-2
|
[26] |
Palastro J P et al 2020 Phys. Rev. Lett. 124 134802 doi: 10.1103/PhysRevLett.124.134802
|
[27] |
Shaw J L et al 2017 Phys. Rev. Lett. 118 064801 doi: 10.1103/PhysRevLett.118.064801
|
[28] |
Bin J H et al 2018 Phys. Rev. Lett. 120 074801 doi: 10.1103/PhysRevLett.120.074801
|
[29] |
Qiao B et al 2019 Plasma Phys. Control. Fusion 61 014039 doi: 10.1088/1361-6587/aaf18e
|
[30] |
Ebert T et al 2020 Phys. Plasmas 27 043106 doi: 10.1063/1.5125775
|
[31] |
Zhou C et al 2018 Phys. Rev. Lett. 121 086801 doi: 10.1103/PhysRevLett.121.086801
|
[32] |
Sawada H et al 2019 Phys. Rev. Lett. 122 155002 doi: 10.1103/PhysRevLett.122.155002
|
[33] |
Hao B et al 2009 Phys. Rev. E 79 046409 doi: 10.1103/PhysRevE.79.046409
|
[34] |
Yang X H et al 2016 Phys. Plasmas 23 103110 doi: 10.1063/1.4966205
|
[35] |
Tzoufras M et al 2006 Phys. Rev. Lett. 96 105002 doi: 10.1103/PhysRevLett.96.105002
|
[36] |
Bret A, Gremillet L and Dieckmann M E 2010 Phys. Plasmas 17 120501 doi: 10.1063/1.3514586
|
[37] |
Gremillet L, Bonnaud G and Amiranoff F 2002 Phys. Plasmas 9 941 doi: 10.1063/1.1432994
|
[38] |
Davies J R 2003 Phys. Rev. E 68 056404 doi: 10.1103/PhysRevE.68.056404
|
[39] |
Robinson A P L et al 2014 Nucl. Fusion 54 054003 doi: 10.1088/0029-5515/54/5/054003
|
[40] |
Norreys P et al 2014 Nucl. Fusion 54 054004 doi: 10.1088/0029-5515/54/5/054004
|
[41] |
Vaisseau X et al 2015 Phys. Rev. Lett. 114 095004 doi: 10.1103/PhysRevLett.114.095004
|
[42] |
Sakata S et al 2018 Nat. Commun. 9 3937 doi: 10.1038/s41467-018-06173-6
|
[43] |
Matsuo K et al 2020 Phys. Rev. Lett. 124 035001 doi: 10.1103/PhysRevLett.124.035001
|
[44] |
Wang X J, Hu Z H and Wang Y N 2022 Plasma Sci. Technol. 24 025001 doi: 10.1088/2058-6272/ac4155
|
[45] |
Kellogg P J et al 1999 J. Geophys. Res. : Space Phys. 104 17069 doi: 10.1029/1999JA900163
|
[46] |
Krafft C, Volokitin A S and Krasnoselskikh V V 2015 Astrophys. J. 809 176 doi: 10.1088/0004-637X/809/2/176
|
[47] |
Pompili R et al 2021 Nat. Phys. 17 499 doi: 10.1038/s41567-020-01116-9
|
[48] |
Arber T D et al 2015 Plasma Phys. Control. Fusion 57 113001 doi: 10.1088/0741-3335/57/11/113001
|
[49] |
Chen F F 2016 Introduction to Plasma Physics and Controlled Fusion III edn (Berlin: Springer)
|
[50] |
O'Neil T 1965 Phys. Fluids 8 2255 doi: 10.1063/1.1761193
|
[51] |
Hou Y W, Ma Z W and Yu M Y 2011 Phys. Plasmas 18 082101 doi: 10.1063/1.3615032
|
[52] |
Manfredi G 1997 Phys. Rev. Lett. 79 2815 doi: 10.1103/PhysRevLett.79.2815
|
[53] |
Kontar E P 2001 Sol. Phys. 202 131 doi: 10.1023/A:1011894830942
|
[54] |
Poquérusse M 1994 Astron. Astrophys. 286 611
|
[55] |
Reid H A S and Ratcliffe H 2014 Res. Astron. Astronphys. 14 773 doi: 10.1088/1674-4527/14/7/003
|
[56] |
Reid H A S and Kontar E P 2010 Astrophys. J. 721 864 doi: 10.1088/0004-637X/721/1/864
|
[57] |
Voshchepynets A et al 2015 Astrophys. J. 807 38 doi: 10.1088/0004-637X/807/1/38
|
[58] |
Vieira J et al 2021 Nat. Phys. 17 99 doi: 10.1038/s41567-020-0995-5
|
[1] | Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602 |
[2] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[3] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[4] | Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a |
[5] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[6] | Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6 |
[7] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[8] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08 |
[9] | CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261 | |
2. | Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992 | |
3. | Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557 | |
4. | Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w | |
5. | Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852 | |
6. | Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337 | |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 | |
8. | Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981 | |
9. | Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488 |