Advanced Search+
Manting LU, Yi HE, Xue LIU, Jiamin HUANG, Jiawei ZHANG, Xiaoping MA, Yu XIN. Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+CH4+NH3 plasma[J]. Plasma Science and Technology, 2023, 25(10): 105503. DOI: 10.1088/2058-6272/acd528
Citation: Manting LU, Yi HE, Xue LIU, Jiamin HUANG, Jiawei ZHANG, Xiaoping MA, Yu XIN. Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+CH4+NH3 plasma[J]. Plasma Science and Technology, 2023, 25(10): 105503. DOI: 10.1088/2058-6272/acd528

Enhancing surface adhesion of polytetrafluoroethylene induced by two-step in-situ treatment with radiofrequency capacitively coupled Ar/Ar+CH4+NH3 plasma

  • Although some progress in plasma modification of the polytetrafluoroethylene (PTFE) surface has been made recently, its adhesion strength still needs to be further improved. In this work, the surface of a PTFE sample was treated with a two-step in-situ method. Firstly, the PTFE surface was treated with capacitively coupled Ar plasma to improve its mechanical interlocking performance; then, Ar+NH3+CH4 plasma was used to deposit an a-CNx:H cross-linking layer on the PTFE surface to improve the molecular bonding ability. After treatment, a high specific surface area of 2.20 and a low F/C ratio of 0.32 were achieved on the PTFE surface. Its surface free energy was increased significantly and its maximum adhesion strength reached 77.1 N−10 mm−1, which is 56% higher than that of the single-step Ar plasma-treated sample and 32% higher than that of the single-step Ar+CH4+NH3 plasma-treated sample.
  • loading

Catalog

    Turn off MathJax
    Article Contents

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return