Advanced Search+
Xiao CHEN, Yao LI, Jianbo HOU, Zhe ZHANG, Xianyang LU, Yu YAN, Liang HE, Yongbing XU. A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography[J]. Plasma Science and Technology, 2023, 25(10): 102001. DOI: 10.1088/2058-6272/acd61e
Citation: Xiao CHEN, Yao LI, Jianbo HOU, Zhe ZHANG, Xianyang LU, Yu YAN, Liang HE, Yongbing XU. A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography[J]. Plasma Science and Technology, 2023, 25(10): 102001. DOI: 10.1088/2058-6272/acd61e

A laser-produced plasma source based on thin-film Gd targets for next-generation extreme ultraviolet lithography

More Information
  • Corresponding author:

    Yao LI, E-mail: liyao@nju.edu.cn

    Yongbing XU, E-mail: ybxu@nju.edu.cn

  • Received Date: March 20, 2023
  • Revised Date: April 25, 2023
  • Accepted Date: May 15, 2023
  • Available Online: December 05, 2023
  • Published Date: June 26, 2023
  • We have studied laser-produced plasma based on mass-limited thin-film Gd targets for beyond the current extreme ultraviolet (EUV) light source of 13.5 nm wavelength based on tin. The influences of the laser intensity on the emission spectra centered around 6.7 nm from thin-film Gd targets were first investigated. It is found that the conversion efficiency of the produced plasma is saturated when the laser intensity goes beyond 2 × 1011 W cm−2. We have systematically compared the emission spectra of the laser-produced plasma with the changes in the thicknesses of the thin-film Gd targets. It is proved that a minimum-mass target with a thickness of 400 nm is sufficient to provide the maximum conversion efficiency, which also implies that this thickness is the ablation depth for the targets. These findings should be helpful in the exploration of next-generation EUV sources, as the thin-film Gd targets will reduce the debris during the plasma generation process compared with the bulk targets.

  • This work is supported by National Natural Science Foundation of China (Nos. 61427812, 61805118, 12104216 and 12241403), and the Natural Science Foundation of Jiangsu Province of China (Nos. BK20192006, BK20180056 and BK20200307).

  • [1]
    Myers D W et al 2005 Proc. SPIE 5751 doi: 10.1117/12.601052
    [2]
    Scheers J et al 2020 Phys. Rev. A 101 062511 doi: 10.1103/physreva.101.062511
    [3]
    Chassé T et al 2003 Vacuum 71 407 doi: 10.1016/S0042-207X(02)00768-6
    [4]
    Chkhalo N I 2013 Appl. Phys. Lett. 102 011602 doi: 10.1063/1.4774298
    [5]
    Naujok P et al 2015 Opt. Express 23 4289 doi: 10.1364/OE.23.004289
    [6]
    Liang Y et al 2016 Proc. SPIE 9776 97761M doi: 10.1117/12.2219840
    [7]
    Otsuka T et al 2010 Appl. Phys. Lett. 97 111503 doi: 10.1063/1.3490704
    [8]
    Kilbane D and O'Sullivan G 2010 J. Appl. Phys. 108 104905 doi: 10.1063/1.3506520
    [9]
    Otsuka T et al 2010 Appl. Phys. Lett. 97 231503 doi: 10.1063/1.3526383
    [10]
    Cummins T et al 2012 Appl. Phys. Lett. 100 061118 doi: 10.1063/1.3684242
    [11]
    Shimomura M et al 2008 Appl. Phys. Express 1 056001 doi: 10.1143/APEX.1.056001
    [12]
    Lan H et al 2017 Vacuum 135 86 doi: 10.1016/j.vacuum.2016.10.015
    [13]
    Higashiguchi T et al 2013 Opt. Express 21 31837 doi: 10.1364/OE.21.031837
    [14]
    Spitzer R C et al 1996 J. Appl. Phys. 79 2251 doi: 10.1063/1.361149
    [15]
    Von W et al 2019 J. Phys. D: Appl. Phys. 52 505202 doi: 10.1088/1361-6463/ab4317
    [16]
    Harilal S S et al 2010 Appl. Phys. Lett. 96 111503 doi: 10.1063/1.3364141
    [17]
    Tao Y et al 2007 Opt. Lett. 32 1338 doi: 10.1364/OL.32.001338
    [18]
    Fujioka S et al 2005 Appl. Phys. Lett. 87 241503 doi: 10.1063/1.2142102
    [19]
    Fujioka S et al 2009 Plasma Fusion Res. 4 048 doi: 10.1585/pfr.4.048
    [20]
    Fujioka S et al 2006 Proc. SPIE 6151 61513V doi: 10.1117/12.656071
    [21]
    Namba S et al 2006 Appl. Phys. Lett. 88 171503 doi: 10.1063/1.2199494
    [22]
    Musgrave C S A, Shoji S Nagai K 2020 Sci. Rep. 10 5906 doi: 10.1038/s41598-020-62858-3
    [23]
    Russell A B et al 2009 J. Appl. Phys. 106 033310 doi: 10.1063/1.3190537
    [24]
    Rakowski R 2011 Appl. Phys. B 102 559 doi: 10.1007/s00340-010-4193-5
    [25]
    Koay C S et al 2005 Proc. SPIE 5751 doi: 10.1117/12.596753
    [26]
    Versolato O O 2019 Plasma Sources Sci. Technol. 28 083001 doi: 10.1088/1361-6595/ab3302
    [27]
    Yoshida K et al 2015 Appl. Phys. Lett. 106 121109 doi: 10.1063/1.4916395
    [28]
    NIST ASD Team 2022 NIST Atomic Spectra Database (version 5.10)
    [29]
    Amano R et al 2018 Jpn. J. Appl. Phys. 57 070311 doi: 10.7567/JJAP.57.070311
  • Related Articles

    [1]Pengyu WANG, Siyu XING, Daoman HAN, Yuru ZHANG, Yong LI, Cheng ZHOU, Fei GAO, Younian WANG. Effects of external parameters on plasma characteristics and uniformity in a dual cylindrical inductively coupled plasma[J]. Plasma Science and Technology, 2024, 26(12): 125401. DOI: 10.1088/2058-6272/ad73aa
    [2]Na LI, Daoman HAN, Quanzhi ZHANG, Xuhui LIU, Yingjie WANG, Younian WANG. Fluid simulation of the effect of a dielectric window with high temperature on plasma parameters in inductively coupled plasma[J]. Plasma Science and Technology, 2023, 25(3): 035401. DOI: 10.1088/2058-6272/ac92ce
    [3]Xiaoyan SUN (孙晓艳), Yuru ZHANG (张钰如), Jing YE (叶静), Younian WANG (王友年), Jianxin HE (何建新). Modulation of the plasma uniformity by coil and dielectric window structures in an inductively coupled plasma[J]. Plasma Science and Technology, 2021, 23(9): 95404-095404. DOI: 10.1088/2058-6272/ac0c6b
    [4]Zeyu HAO (郝泽宇), JianSONG(宋健), YueHUA(滑跃), Gailing ZHANG (张改玲), Xiaodong BAI (白晓东), Chunsheng REN (任春生). Frequency dependence of plasma characteristics at different pressures in cylindrical inductively coupled plasma source[J]. Plasma Science and Technology, 2019, 21(7): 75401-075401. DOI: 10.1088/2058-6272/ab1035
    [5]Yan HUI (辉妍), Na LU (鲁娜), Pengzhen LUO (罗朋振), Kefeng SHANG (商克峰), Nan JIANG (姜楠), Jie LI (李杰), Yan WU (吴彦). Classification and uniformity optimization of mesh-plate DBD and its application in polypropylene modification[J]. Plasma Science and Technology, 2019, 21(5): 54006-054006. DOI: 10.1088/2058-6272/aafae1
    [6]Jun DENG (邓俊), Liming HE (何立明), Xingjian LIU (刘兴建), Yi CHEN (陈一). Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber[J]. Plasma Science and Technology, 2018, 20(12): 125502. DOI: 10.1088/2058-6272/aacdef
    [7]Yue HUA (滑跃), Jian SONG (宋健), Zeyu HAO (郝泽宇), Gailing ZHANG (张改玲), Chunsheng REN (任春生). Effects of direct current discharge on the spatial distribution of cylindrical inductivelycoupled plasma at different gas pressures[J]. Plasma Science and Technology, 2018, 20(1): 14005-014005. DOI: 10.1088/2058-6272/aa8ea8
    [8]ZHANG Zhihui(张志辉), WU Xuemei(吴雪梅), NING Zhaoyuan(宁兆元). The Effect of Inductively Coupled Discharge on Capacitively Coupled Nitrogen-Hydrogen Plasma[J]. Plasma Science and Technology, 2014, 16(4): 352-355. DOI: 10.1088/1009-0630/16/4/09
    [9]SHI Xingjian (侍行剑), HU Yemin (胡业民), GAO Zhe (高喆). Optimization of Lower Hybrid Current Drive Efficiency for EAST Plasma with Non-Circular Cross Section and Finite Aspect-Ratio[J]. Plasma Science and Technology, 2012, 14(3): 215-221. DOI: 10.1088/1009-0630/14/3/06
    [10]ZHAO Guoli, XU Yong, SHANG Jianping, LIU Wenyao, ZHU Aimin, WANG Younian. Plasma Uniformity in a Dual Frequency Capacitively Coupled Plasma Reactor Measured by Optical Emission Spectroscopy[J]. Plasma Science and Technology, 2011, 13(1): 61-67.

Catalog

    Figures(7)

    Article views (34) PDF downloads (18) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return