Loading [MathJax]/jax/output/SVG/jax.js
Advanced Search+
Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
Citation: Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026

SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction

More Information
  • Corresponding author:

    Yunfeng LIANG, E-mail: y.liang@fz-juelich.de

    Yingfeng XU, E-mail: xuyingfeng@dhu.edu.cn

  • Received Date: April 19, 2023
  • Revised Date: May 29, 2023
  • Accepted Date: June 19, 2023
  • Available Online: December 05, 2023
  • Published Date: July 12, 2023
  • To better understand divertor detachment and asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), drift modeling via the comprehensive edge plasma code SOLPS-ITER of neon impurity seeded plasmas in favorable/unfavorable toroidal magnetic field (BT) has been performed. Firstly, electrostatic potential/field (ϕ/E) distribution has been analyzed, to make sure that ϕ and E are correctly described and to better understand drift-driven processes. After that, drift effects on divertor detachment and asymmetry have been focused on. In accordance with the corresponding experimental observations, simulation results demonstrate that in favorable BT the onset of detachment is highly asymmetric between the inner and outer divertors; and reversing BT can significantly decrease the magnitude of in-out asymmetry in the onset of detachment, physics reasons for which have been explored. It is found that, apart from the well-known E × B drift particle flow from one divertor to the other through the private flux region, scrape-off layer (SOL) heat flow, which is much more asymmetrically distributed between the high field side and low field side for favorable BT than that for unfavorable BT, is also a critical parameter affecting divertor detachment and asymmetry. During detachment, upstream pressure (Pu) reduction occurs and tends to be more dramatical in the colder side than that in the hotter side. The convective SOL heat flow, emerging due to in-out asymmetry in Pu reduction, is found to be critical for understanding divertor detachment and asymmetry observed in EAST. To better understand the calculated drastic power radiation in the core and upstream SOL, drift effects on divertor leakage/retention of neon in EAST with both BT directions have been addressed for the first time, by analyzing profile of poloidal neon velocity and that of neon ionization source from atoms. This work can be a reference for future numeric simulations performed more closely related to experimental regimes.

  • This work was supported by National Natural Sciences Foundation of China (Nos. 12075052, 12175034 and 12275098) and National Key R&D Program of China (Nos. 2018YFE0309103, 2017YFE0301100 and 2017YFE0301104). The authors are very grateful to the EAST team for all the support. Numerical computations regarding this work were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences.

  • [1]
    Wan B N et al 2019 Nucl. Fusion 59 112003 doi: 10.1088/1741-4326/ab0396
    [2]
    Motojima O 2015 Nucl. Fusion 55 104023 doi: 10.1088/0029-5515/55/10/104023
    [3]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton, FL: CRC Press)
    [4]
    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001 doi: 10.1088/1361-6587/aaa7a9
    [5]
    Pitts R A et al 2013 J. Nucl. Mater. 438 S48 doi: 10.1016/j.jnucmat.2013.01.008
    [6]
    Senichenkov I Y et al 2019 Plasma Phys. Control. Fusion 61 045013 doi: 10.1088/1361-6587/ab04d0
    [7]
    Jaervinen A E et al 2018 Phys. Rev. Lett. 121 075001 doi: 10.1103/PhysRevLett.121.075001
    [8]
    Rozhansky V et al 2012 Nucl. Fusion 52 103017 doi: 10.1088/0029-5515/52/10/103017
    [9]
    Wensing M et al 2020 Nucl. Fusion 60 054005 doi: 10.1088/1741-4326/ab7d4f
    [10]
    Liu J B et al 2019 Nucl. Fusion 59 126046 doi: 10.1088/1741-4326/ab4639
    [11]
    Kallenbach A et al 2013 Plasma Phys. Control. Fusion 55 124041 doi: 10.1088/0741-3335/55/12/124041
    [12]
    Reinke M L 2011 J. Nucl. Mater. 415 S340 doi: 10.1016/j.jnucmat.2010.10.055
    [13]
    Li K D et al 2021 Nucl. Fusion 61 066013 doi: 10.1088/1741-4326/abf418
    [14]
    Wiesen S et al 2015 J. Nucl. Mater. 463 480 doi: 10.1016/j.jnucmat.2014.10.012
    [15]
    Bonnin X et al 2016 Plasma Fusion Res. 11 1403102 doi: 10.1585/pfr.11.1403102
    [16]
    Reiter D Baelmans M and Börner P 2005 Fusion Sci. Technol. 47 172 doi: 10.13182/FST47-172
    [17]
    Rozhansky V et al 2009 Nucl. Fusion 49 025007 doi: 10.1088/0029-5515/49/2/025007
    [18]
    Braginskii S I 1965 Transport processes in plasma ed M A Leontovich Reviews of Plasma Physics (New York: Consultants Bureau) vol 205
    [19]
    Wang F Q et al 2022 Nucl. Fusion 62 056021 doi: 10.1088/1741-4326/ac4c04
    [20]
    Hu Q S et al 2010 Fusion Eng. Des. 85 1508 doi: 10.1016/j.fusengdes.2010.04.015
    [21]
    Yu Y W et al 2019 Nucl. Fusion 59 126036 doi: 10.1088/1741-4326/ab3ead
    [22]
    Rognlien T D, Porter G D and Ryutov D D 1999 J. Nucl. Mater. 266-269 654 doi: 10.1016/S0022-3115(98)00835-6
    [23]
    Jaervinen A E 2017 Nucl. Mater. Energy 12 1136 doi: 10.1016/j.nme.2016.11.014
    [24]
    Rozhansky V et al 2018 Contrib. Plasma Phys. 58 540 doi: 10.1002/ctpp.201700119
    [25]
    Schaffer M J et al 2001 J. Nucl. Mater. 290–293 530 doi: 10.1016/S0022-3115(00)00498-0
    [26]
    Silva C G et al 1999 J. Nucl. Mater. 266–269 679 doi: 10.1016/S0022-3115(98)00600-X
    [27]
    Rozhansky V et al 2016 Contrib. Plasma Phys. 56 587 doi: 10.1002/ctpp.201610056
    [28]
    Kaveeva E et al 2020 Nucl. Fusion 60 046019 doi: 10.1088/1741-4326/ab73c1
    [29]
    Lin X et al 2021 Nucl. Fusion 61 026014 doi: 10.1088/1741-4326/abcb27
    [30]
    Zhao X L et al 2022 Nucl. Mater. Energy 33 101317 doi: 10.1016/j.nme.2022.101317
    [31]
    Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022 doi: 10.1088/1361-6587/aaacf6
    [32]
    Verhaegh K et al 2019 Nucl. Fusion 59 126038 doi: 10.1088/1741-4326/ab4251
    [33]
    Hitzler F et al 2020 Plasma Phys. Control. Fusion 62 085013 doi: 10.1088/1361-6587/ab9b00
    [34]
    Pütterich T et al 2019 Nucl. Fusion 59 056013 doi: 10.1088/1741-4326/ab0384
    [35]
    Vekshina E et al 2022 Contrib. Plasma Phys. 62 e202100176 doi: 10.1002/ctpp.202100176
    [36]
    Liu X J et al 2017 Phys. Plasmas 24 122509 doi: 10.1063/1.4997101
    [37]
    Bernert M et al 2021 Nucl. Fusion 61 024001 doi: 10.1088/1741-4326/abc936
    [38]
    Casali L 2020 Phys. Plasmas 27 062506 doi: 10.1063/1.5144693
    [39]
    Meier E T et al 2016 Plasma Phys. Control. Fusion 58 125012 doi: 10.1088/0741-3335/58/12/125012
    [40]
    Krasheninnikov S I, Kukushkin A S and Pshenov A A 2016 Phys. Plasmas 23 055602 doi: 10.1063/1.4948273
    [41]
    Pshenov A A, Kukushkin A S and Krasheninnikov S I 2017 Nucl. Mater. Energy 12 948 doi: 10.1016/j.nme.2017.03.019
    [42]
    Kukushkin A S, Pacher H D and Pitts R A 2015 J. Nucl. Mater. 463 586 doi: 10.1016/j.jnucmat.2014.10.042
    [43]
    Stangeby P C and Elder J D 1995 Nucl. Fusion 35 1391 doi: 10.1088/0029-5515/35/11/I06
    [44]
    Neuhauser J et al 1984 Nucl. Fusion 24 39 doi: 10.1088/0029-5515/24/1/004
    [45]
    Komm M et al 2019 Nucl. Fusion 59 106035 doi: 10.1088/1741-4326/ab34d2
  • Related Articles

    [1]Yan WANG (王艳), Zhimin LIU (刘智民), Lizhen LIANG (梁立振), Chundong HU (胡纯栋). Preliminary results of optical emission spectroscopy by line ratio method in the RF negative ion source at ASIPP[J]. Plasma Science and Technology, 2019, 21(4): 45601-045601. DOI: 10.1088/2058-6272/aaf592
    [2]Jun WU (吴军), Jian WU (吴健), M T RIETVELD, I HAGGSTROM, Haisheng ZHAO (赵海生), Tong XU (徐彤), Zhengwen XU (许正文). Systematic variation in observing altitude of enhanced ion line by the pump near fifth gyroharmonic[J]. Plasma Science and Technology, 2018, 20(12): 125301. DOI: 10.1088/2058-6272/aadd44
    [3]Xianhai PANG (庞先海), Ting WANG (王婷), Shixin XIU (修士新), Junfei YANG (杨俊飞), Hao JING (景皓). Investigation of cathode spot characteristics in vacuum under transverse magnetic field (TMF) contacts[J]. Plasma Science and Technology, 2018, 20(8): 85502-085502. DOI: 10.1088/2058-6272/aab782
    [4]Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b
    [5]HU Yixiang(呼义翔), ZENG Jiangtao(曾江涛), SUN Fengju(孙凤举), WEI Hao(魏浩), YIN Jiahui(尹佳辉), CONG Peitian(丛培天), QIU Aici(邱爱慈). Modeling Methods for the Main Switch of High Pulsed-Power Facilities Based on Transmission Line Code[J]. Plasma Science and Technology, 2014, 16(9): 873-876. DOI: 10.1088/1009-0630/16/9/12
    [6]WU Hanyu(吴撼宇), ZENG Zhengzhong(曾正中), WANG Liangping(王亮平), GUO Ning(郭宁). Experimental Study of Current Loss of Stainless Steel Magnetically Insulated Transmission Line with Current Density at MA/cm Level[J]. Plasma Science and Technology, 2014, 16(6): 625-628. DOI: 10.1088/1009-0630/16/6/16
    [7]ZHU Liying(朱立颖), WU Jianwen(武建文), JIANG Yuan(蒋原). Motion and Splitting of Vacuum Arc Column in Transverse Magnetic Field Contacts at Intermediate-Frequency[J]. Plasma Science and Technology, 2014, 16(5): 454-459. DOI: 10.1088/1009-0630/16/5/03
    [8]DUAN Ping(段萍), ZHOU Xinwei(周新维), LIU Yuan(刘媛), CAO Anning(曹安宁), QIN Haijuan(覃海娟), CHEN Long(陈龙), YIN Yan(殷燕). Effects of Magnetic Field and Ion Velocity on SPT Plasma Sheath Characteristics[J]. Plasma Science and Technology, 2014, 16(2): 161-167. DOI: 10.1088/1009-0630/16/2/13
    [9]LI Hui (李辉), XIE Mingfeng (谢铭丰). Plasma Parameters of a Gliding Arc Jet at Atmospheric Pressure Obtained by a Line-Ratio Method[J]. Plasma Science and Technology, 2013, 15(8): 776-779. DOI: 10.1088/1009-0630/15/8/11
    [10]GUO Jun(郭俊). The Effects of Relative Drift Velocities Between Proton and He2+ on the Magnetic Spectral Signatures in the Plasma Depletion Layer[J]. Plasma Science and Technology, 2011, 13(5): 557-560.

Catalog

    Figures(19)  /  Tables(1)

    Article views (93) PDF downloads (53) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return