Loading [MathJax]/jax/output/SVG/jax.js
Advanced Search+
Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026
Citation: Fuqiong WANG, Yunfeng LIANG, Yingfeng XU, Xuejun ZHA, Fangchuan ZHONG, Songtao MAO, Yanmin DUAN, Liqun HU. SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction[J]. Plasma Science and Technology, 2023, 25(11): 115102. DOI: 10.1088/2058-6272/ace026

SOLPS-ITER drift modeling of neon impurity seeded plasmas in EAST with favorable and unfavorable toroidal magnetic field direction

More Information
  • Corresponding author:

    Yunfeng LIANG, E-mail: y.liang@fz-juelich.de

    Yingfeng XU, E-mail: xuyingfeng@dhu.edu.cn

  • Received Date: April 19, 2023
  • Revised Date: May 29, 2023
  • Accepted Date: June 19, 2023
  • Available Online: December 05, 2023
  • Published Date: July 12, 2023
  • To better understand divertor detachment and asymmetry in the Experimental Advanced Superconducting Tokamak (EAST), drift modeling via the comprehensive edge plasma code SOLPS-ITER of neon impurity seeded plasmas in favorable/unfavorable toroidal magnetic field (BT) has been performed. Firstly, electrostatic potential/field (ϕ/E) distribution has been analyzed, to make sure that ϕ and E are correctly described and to better understand drift-driven processes. After that, drift effects on divertor detachment and asymmetry have been focused on. In accordance with the corresponding experimental observations, simulation results demonstrate that in favorable BT the onset of detachment is highly asymmetric between the inner and outer divertors; and reversing BT can significantly decrease the magnitude of in-out asymmetry in the onset of detachment, physics reasons for which have been explored. It is found that, apart from the well-known E × B drift particle flow from one divertor to the other through the private flux region, scrape-off layer (SOL) heat flow, which is much more asymmetrically distributed between the high field side and low field side for favorable BT than that for unfavorable BT, is also a critical parameter affecting divertor detachment and asymmetry. During detachment, upstream pressure (Pu) reduction occurs and tends to be more dramatical in the colder side than that in the hotter side. The convective SOL heat flow, emerging due to in-out asymmetry in Pu reduction, is found to be critical for understanding divertor detachment and asymmetry observed in EAST. To better understand the calculated drastic power radiation in the core and upstream SOL, drift effects on divertor leakage/retention of neon in EAST with both BT directions have been addressed for the first time, by analyzing profile of poloidal neon velocity and that of neon ionization source from atoms. This work can be a reference for future numeric simulations performed more closely related to experimental regimes.

  • This work was supported by National Natural Sciences Foundation of China (Nos. 12075052, 12175034 and 12275098) and National Key R&D Program of China (Nos. 2018YFE0309103, 2017YFE0301100 and 2017YFE0301104). The authors are very grateful to the EAST team for all the support. Numerical computations regarding this work were performed on the ShenMa High Performance Computing Cluster in Institute of Plasma Physics, Chinese Academy of Sciences.

  • [1]
    Wan B N et al 2019 Nucl. Fusion 59 112003 doi: 10.1088/1741-4326/ab0396
    [2]
    Motojima O 2015 Nucl. Fusion 55 104023 doi: 10.1088/0029-5515/55/10/104023
    [3]
    Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton, FL: CRC Press)
    [4]
    Leonard A W 2018 Plasma Phys. Control. Fusion 60 044001 doi: 10.1088/1361-6587/aaa7a9
    [5]
    Pitts R A et al 2013 J. Nucl. Mater. 438 S48 doi: 10.1016/j.jnucmat.2013.01.008
    [6]
    Senichenkov I Y et al 2019 Plasma Phys. Control. Fusion 61 045013 doi: 10.1088/1361-6587/ab04d0
    [7]
    Jaervinen A E et al 2018 Phys. Rev. Lett. 121 075001 doi: 10.1103/PhysRevLett.121.075001
    [8]
    Rozhansky V et al 2012 Nucl. Fusion 52 103017 doi: 10.1088/0029-5515/52/10/103017
    [9]
    Wensing M et al 2020 Nucl. Fusion 60 054005 doi: 10.1088/1741-4326/ab7d4f
    [10]
    Liu J B et al 2019 Nucl. Fusion 59 126046 doi: 10.1088/1741-4326/ab4639
    [11]
    Kallenbach A et al 2013 Plasma Phys. Control. Fusion 55 124041 doi: 10.1088/0741-3335/55/12/124041
    [12]
    Reinke M L 2011 J. Nucl. Mater. 415 S340 doi: 10.1016/j.jnucmat.2010.10.055
    [13]
    Li K D et al 2021 Nucl. Fusion 61 066013 doi: 10.1088/1741-4326/abf418
    [14]
    Wiesen S et al 2015 J. Nucl. Mater. 463 480 doi: 10.1016/j.jnucmat.2014.10.012
    [15]
    Bonnin X et al 2016 Plasma Fusion Res. 11 1403102 doi: 10.1585/pfr.11.1403102
    [16]
    Reiter D Baelmans M and Börner P 2005 Fusion Sci. Technol. 47 172 doi: 10.13182/FST47-172
    [17]
    Rozhansky V et al 2009 Nucl. Fusion 49 025007 doi: 10.1088/0029-5515/49/2/025007
    [18]
    Braginskii S I 1965 Transport processes in plasma ed M A Leontovich Reviews of Plasma Physics (New York: Consultants Bureau) vol 205
    [19]
    Wang F Q et al 2022 Nucl. Fusion 62 056021 doi: 10.1088/1741-4326/ac4c04
    [20]
    Hu Q S et al 2010 Fusion Eng. Des. 85 1508 doi: 10.1016/j.fusengdes.2010.04.015
    [21]
    Yu Y W et al 2019 Nucl. Fusion 59 126036 doi: 10.1088/1741-4326/ab3ead
    [22]
    Rognlien T D, Porter G D and Ryutov D D 1999 J. Nucl. Mater. 266-269 654 doi: 10.1016/S0022-3115(98)00835-6
    [23]
    Jaervinen A E 2017 Nucl. Mater. Energy 12 1136 doi: 10.1016/j.nme.2016.11.014
    [24]
    Rozhansky V et al 2018 Contrib. Plasma Phys. 58 540 doi: 10.1002/ctpp.201700119
    [25]
    Schaffer M J et al 2001 J. Nucl. Mater. 290–293 530 doi: 10.1016/S0022-3115(00)00498-0
    [26]
    Silva C G et al 1999 J. Nucl. Mater. 266–269 679 doi: 10.1016/S0022-3115(98)00600-X
    [27]
    Rozhansky V et al 2016 Contrib. Plasma Phys. 56 587 doi: 10.1002/ctpp.201610056
    [28]
    Kaveeva E et al 2020 Nucl. Fusion 60 046019 doi: 10.1088/1741-4326/ab73c1
    [29]
    Lin X et al 2021 Nucl. Fusion 61 026014 doi: 10.1088/1741-4326/abcb27
    [30]
    Zhao X L et al 2022 Nucl. Mater. Energy 33 101317 doi: 10.1016/j.nme.2022.101317
    [31]
    Stangeby P C 2018 Plasma Phys. Control. Fusion 60 044022 doi: 10.1088/1361-6587/aaacf6
    [32]
    Verhaegh K et al 2019 Nucl. Fusion 59 126038 doi: 10.1088/1741-4326/ab4251
    [33]
    Hitzler F et al 2020 Plasma Phys. Control. Fusion 62 085013 doi: 10.1088/1361-6587/ab9b00
    [34]
    Pütterich T et al 2019 Nucl. Fusion 59 056013 doi: 10.1088/1741-4326/ab0384
    [35]
    Vekshina E et al 2022 Contrib. Plasma Phys. 62 e202100176 doi: 10.1002/ctpp.202100176
    [36]
    Liu X J et al 2017 Phys. Plasmas 24 122509 doi: 10.1063/1.4997101
    [37]
    Bernert M et al 2021 Nucl. Fusion 61 024001 doi: 10.1088/1741-4326/abc936
    [38]
    Casali L 2020 Phys. Plasmas 27 062506 doi: 10.1063/1.5144693
    [39]
    Meier E T et al 2016 Plasma Phys. Control. Fusion 58 125012 doi: 10.1088/0741-3335/58/12/125012
    [40]
    Krasheninnikov S I, Kukushkin A S and Pshenov A A 2016 Phys. Plasmas 23 055602 doi: 10.1063/1.4948273
    [41]
    Pshenov A A, Kukushkin A S and Krasheninnikov S I 2017 Nucl. Mater. Energy 12 948 doi: 10.1016/j.nme.2017.03.019
    [42]
    Kukushkin A S, Pacher H D and Pitts R A 2015 J. Nucl. Mater. 463 586 doi: 10.1016/j.jnucmat.2014.10.042
    [43]
    Stangeby P C and Elder J D 1995 Nucl. Fusion 35 1391 doi: 10.1088/0029-5515/35/11/I06
    [44]
    Neuhauser J et al 1984 Nucl. Fusion 24 39 doi: 10.1088/0029-5515/24/1/004
    [45]
    Komm M et al 2019 Nucl. Fusion 59 106035 doi: 10.1088/1741-4326/ab34d2
  • Related Articles

    [1]Jing OU, Jiamin LONG. Estimates of required impurity fraction for EAST divertor detachment[J]. Plasma Science and Technology, 2025, 27(1): 015103. DOI: 10.1088/2058-6272/ad8ffb
    [2]Yifei LIU, Jiquan LI. Gyro-Landau-fluid simulations of impurity effects on ion temperature gradient driven turbulence transport[J]. Plasma Science and Technology, 2024, 26(1): 015101. DOI: 10.1088/2058-6272/ad0c9b
    [3]Jianbin LIU, Lingyi MENG, Houyang GUO, Kedong LI, Jichan XU, Huiqian WANG, Guosheng XU, Fang DING, Ling ZHANG, Yanmin DUAN, Bin ZHANG, Lin YU, Ping WANG, Ang LI, Donggui WU, Rui DING, Liang WANG. Divertor detachment operation in helium plasmas with ITER-like tungsten divertor in EAST[J]. Plasma Science and Technology, 2022, 24(7): 075101. DOI: 10.1088/2058-6272/ac621d
    [4]Liping DONG (董丽平), Yanmin DUAN (段艳敏), Kaiyun CHEN (陈开云), Xiuda YANG (杨秀达), Ling ZHANG (张凌), Feng XU (徐峰), Jingbo CHEN (陈竞博), Songtao MAO (毛松涛), Zhenwei WU (吴振伟), Liqun HU (胡立群). Influence of impurity seeding on the plasma radiation in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65102-065102. DOI: 10.1088/2058-6272/aab20c
    [5]Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8
    [6]Heng LAN (兰恒), Guosheng XU (徐国盛), Kevin TRITZ, Ning YAN (颜宁), Tonghui SHI (石同辉), Yongliang LI (李永亮), Tengfei WANG (王腾飞), Liang WANG (王亮), Jingbo CHEN (陈竞博), Yanmin DUAN (段艳敏), Yi YUAN (原毅), Youwen SUN (孙有文), Shuai GU (顾帅), Qing ZANG (臧庆), Ran CHEN (陈冉), Liang CHEN (陈良), Xingwei ZHENG (郑星炜), Shuliang CHEN (陈树亮), HuanLIU (刘欢), YangYE (叶扬), Huiqian WANG (汪惠乾), Baonian WAN (万宝年), the EAST Team. Analysis of electron temperature, impurity transport and MHD activity with multi-energy soft x-ray diagnostic in EAST tokamak[J]. Plasma Science and Technology, 2017, 19(12): 125101. DOI: 10.1088/2058-6272/aa8cbf
    [7]Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101
    [8]WANG Fuqiong(王福琼), CHEN Yiping(陈一平), HU Liqun(胡立群). DIVIMP Modeling of Impurity Transport in EAST[J]. Plasma Science and Technology, 2014, 16(7): 642-649. DOI: 10.1088/1009-0630/16/7/03
    [9]LI Chengyue (李承跃). Numerical Simulation of the Neutralized α Particle Transport near the Divertor Plate Region[J]. Plasma Science and Technology, 2012, 14(10): 886-890. DOI: 10.1088/1009-0630/14/10/06
    [10]WANG Junyi (王君一), CHEN Yiping(陈一平). Study of Carbon Impurity Transport at SOL in EAST[J]. Plasma Science and Technology, 2010, 12(5): 535-539.
  • Cited by

    Periodical cited type(6)

    1. Zhang, Z., Wen, H.F., Li, L. et al. Imaging the distribution of a surface plasmon induced electromagnetic field at the nanoscale with MFSM. Japanese Journal of Applied Physics, Part 1: Regular Papers and Short Notes and Review Papers, 2024, 63(10): 106001. DOI:10.35848/1347-4065/ad82c4
    2. Wei, G., Nie, Q., Zhang, Z. et al. Numerical investigation of a plasma-dielectric-plasma waveguide with tunable Fano resonances. Optik, 2024. DOI:10.1016/j.ijleo.2024.171819
    3. Gao, M., Wang, B., Guo, B. Propagation of surface magnetoplasmon polaritons in a symmetric waveguide with two-dimensional electron gas. Plasma Science and Technology, 2023, 25(9): 095001. DOI:10.1088/2058-6272/acd09e
    4. Pei, R., Liu, D., Zhang, Q. et al. Fluctuation of Plasmonically Induced Transparency Peaks within Multi-Rectangle Resonators. Sensors, 2023, 23(1): 226. DOI:10.3390/s23010226
    5. Wang, B., Guo, B. Chiral Berry plasmon dispersion of the two-dimensional electron gas based on a quantum hydrodynamic model. Physics of Plasmas, 2022, 29(8): 082101. DOI:10.1063/5.0097873
    6. Gric, T., Rafailov, E. Absorption enhancement in hyperbolic metamaterials by means of magnetic plasma. Applied Sciences (Switzerland), 2021, 11(11): 4720. DOI:10.3390/app11114720

    Other cited types(0)

Catalog

    Figures(19)  /  Tables(1)

    Article views (93) PDF downloads (53) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return