Citation: | Letian LI, Shaocheng LIU, Ning YAN, Xiaoju LIU, Xiang GAO. Development of a 2D spatial displacement estimation method for turbulence velocimetry of the gas puff imaging system on EAST[J]. Plasma Science and Technology, 2024, 26(3): 034003. DOI: 10.1088/2058-6272/ad0c24 |
A gas puff imaging (GPI) diagnostic has been developed and operated on EAST since 2012, and the time-delay estimation (TDE) method is used to derive the propagation velocity of fluctuations from the two-dimensional GPI data. However, with the TDE method it is difficult to analyze the data with fast transient events, such as edge-localized mode (ELM). Consequently, a method called the spatial displacement estimation (SDE) algorithm is developed to estimate the turbulence velocity with high temporal resolution. Based on the SDE algorithm, we make some improvements, including an adaptive median filter and super-resolution technology. After the development of the algorithm, a straight-line movement and a curved-line movement are used to test the accuracy of the algorithm, and the calculated speed agrees well with preset speed. This SDE algorithm is applied to the EAST GPI data analysis, and the derived propagation velocity of turbulence is consistent with that from the TDE method, but with much higher temporal resolution.
[1] |
Piras F et al 2010 Phys. Rev. Lett. 105 155003 doi: 10.1103/PhysRevLett.105.155003
|
[2] |
Baonian Wan for the EAST and HT-7 Teams and International Collaborators 2009 Nucl. Fusion 49 104011 doi: 10.1088/0029-5515/49/10/104011
|
[3] |
Wan Y X et al 2006 Plasma Sci. Technol. 8 253 doi: 10.1088/1009-0630/8/3/01
|
[4] |
Harbour P J 1984 Nucl. Fusion 24 1211 doi: 10.1088/0029-5515/24/9/011
|
[5] |
Harrison M F A, Harbour P J and Hotston E S 1983 Nucl. Technol. Fusion 3 432 doi: 10.13182/FST83-A20866
|
[6] |
Ke R et al 2018 Rev. Sci. Instrum. 89 10D122 doi: 10.1063/1.5039350
|
[7] |
Chodura R 1992 Contrib. Plasm. Phys. 32 219 doi: 10.1002/ctpp.2150320308
|
[8] |
Hobbs G D and Wesson J A 1967 Plasma Phys. 9 85 doi: 10.1088/0032-1028/9/1/410
|
[9] |
Mahdavi M A et al 1981 Phys. Rev. Lett. 47 1602 doi: 10.1103/PhysRevLett.47.1602
|
[10] |
Tobias B et al 2010 Rev. Sci. Instrum. 81 10D928 doi: 10.1063/1.3460456
|
[11] |
Yun G S et al 2010 Rev. Sci. Instrum. 81 10D930 doi: 10.1063/1.3483209
|
[12] |
Li X L et al 2021 Fusion Eng. Des. 172 112915 doi: 10.1016/j.fusengdes.2021.112915
|
[13] |
Zhu Y et al 2020 J. Instrum. 15 P07006 doi: 10.1088/1748-0221/15/07/P07006
|
[14] |
Xie X L et al 2020 Fusion Eng. Des. 155 111636 doi: 10.1016/j.fusengdes.2020.111636
|
[15] |
Liu S C et al 2012 Rev. Sci. Instrum. 83 123506 doi: 10.1063/1.4770122
|
[16] |
Sechrest Y et al 2015 Phys. Plasmas 22 052310 doi: 10.1063/1.4921215
|
[17] |
Yuan B et al 2018 J. Instrum. 13 C03033 doi: 10.1088/1748-0221/13/03/C03033
|
[18] |
Levinson S J et al 1984 Nucl. Fusion 24 527 doi: 10.1088/0029-5515/24/5/001
|
[19] |
Maqueda R J et al 2001 Rev. Sci. Instrum. 72 931 doi: 10.1063/1.1321009
|
[20] |
Halpern F D et al 2015 Plasma Phys. Control. Fusion 57 054005 doi: 10.1088/0741-3335/57/5/054005
|
[21] |
Shesterikov I et al 2013 Rev. Sci. Instrum. 84 053501 doi: 10.1063/1.4803934
|
[22] |
Li F et al 2021 Rev. Sci. Instrum. 92 043503 doi: 10.1063/5.0040988
|
[23] |
Shao L M et al 2013 Plasma Phys. Control. Fusion 55 105006 doi: 10.1088/0741-3335/55/10/105006
|
[24] |
Horn B K P and Schunck B G 1981 Artif. Intell. 17 185 doi: 10.1016/0004-3702(81)90024-2
|
[25] |
Banerjee S et al 2015 Rev. Sci. Instrum. 86 033505 doi: 10.1063/1.4914838
|
[26] |
Lampert M, Diallo A and Zweben S J 2021 Rev. Sci. Instrum. 92 083508 doi: 10.1063/5.0058216
|
[27] |
Kriete D M et al 2018 Rev. Sci. Instrum. 89 10E107 doi: 10.1063/1.5036535
|
[28] |
Boedo J A et al 2014 Phys. Plasmas 21 042309 doi: 10.1063/1.4873390
|
[29] |
Yun G S et al 2012 Phys. Rev. Lett. 109 145003 doi: 10.1103/PhysRevLett.109.145003
|
[30] |
Hwang H and Haddad R A 1995 IEEE Trans. Image Process. 4 499 doi: 10.1109/83.370679
|
[31] |
Keys R 1981 IEEE Trans. Acoust. Speech Signal Process. 29 1153 doi: 10.1109/TASSP.1981.1163711
|
[32] |
Cooley J W and Tukey J W 1965 Math. Comput. 19 297 doi: 10.1090/S0025-5718-1965-0178586-1
|
[33] |
Horvatic D, Stanley H E and Podobnik B 2011 Europhys. Lett. 94 18007 doi: 10.1209/0295-5075/94/18007
|
[34] |
Ahmad M and Sundararajan D 1987 IEEE Trans. Circuits Syst. 34 1364 doi: 10.1109/TCS.1987.1086059
|
[35] |
Liu S C et al 2022 Fusion Eng. Des. 179 113156 doi: 10.1016/j.fusengdes.2022.113156
|
[36] |
Strang G 1994 Am. Sci. 82 256
|
[37] |
Anuta P E 1970 IEEE Trans. Geosci. Electron. 8 353 doi: 10.1109/TGE.1970.271435
|
[38] |
Wong J W H, Durante C and Cartwright H M 2005 Anal. Chem. 77 5655 doi: 10.1021/ac050619p
|
[39] |
Ballantine J P et al 1952 Am. Math. Mon. 59 242
|
[40] |
Diallo A et al 2017 Nucl. Fusion 57 066050 doi: 10.1088/1741-4326/aa6a24
|
[41] |
Banerjee S, Diallo A and Zweben S J 2016 Phys. Plasmas 23 044502 doi: 10.1063/1.4946871
|
[1] | Qi WANG (汪启), Qingquan YANG (杨清泉), Zhengmao SHENG (盛正卯), Guosheng XU (徐国盛), Jinping QIAN (钱金平), Ning YAN (颜宁), Yifeng WANG (王一丰), Heng ZHANG (张恒). Dependence of the internal inductance on the radial distance between the primary and secondary X-point surfaces in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(10): 105101. DOI: 10.1088/2058-6272/aad326 |
[2] | Qingquan YANG (杨清泉), Fangchuan ZHONG (钟方川), Guosheng XU (徐国盛), Ning YAN (颜宁), Liang CHEN (陈良), Xiang LIU (刘祥), Yong LIU (刘永), Liang WANG (王亮), Zhendong YANG (仰振东), Yifeng WANG (王一丰), Yang YE (叶扬), Heng ZHANG (张恒), Xiaoliang LI (李小良). Combined Langmuir-magnetic probe measurements of type-I ELMy filaments in the EAST tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65101-065101. DOI: 10.1088/2058-6272/aaab43 |
[3] | Weiye XU (徐伟业), Handong XU (徐旵东), Fukun LIU (刘甫坤), Jian WANG (王健), Xiaojie WANG (王晓洁), Yongzhong HOU (侯永忠). Calorimetric power measurements in the EAST ECRH system[J]. Plasma Science and Technology, 2017, 19(10): 105602. DOI: 10.1088/2058-6272/aa7ec9 |
[4] | HU Chundong (胡纯栋), XIE Yahong (谢亚红), XIE Yuanlai (谢远来), LIU Sheng (刘胜), XU Yongjian (许永建), LIANG Lizhen (梁立振), JIANG Caichao (蒋才超), SHENG Peng (盛鹏), GU Yuming (顾玉明), LI Jun (李军), LIU Zhimin (刘智民). Overview of Development Status for EAST-NBI System[J]. Plasma Science and Technology, 2015, 17(10): 817-825. DOI: 10.1088/1009-0630/17/10/02 |
[5] | FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14 |
[6] | GAO Xiang (高翔), ZHANG Tao (张涛), HAN Xiang (韩翔), ZHANG Shoubiao (张寿彪), et al.. Observation of Pedestal Plasma Turbulence on EAST Tokamak[J]. Plasma Science and Technology, 2013, 15(8): 732-737. DOI: 10.1088/1009-0630/15/8/03 |
[7] | WANG Fumin (王福敏), GAN Kaifu (甘开福), GONG Xianzu (龚先祖), EAST team. Temperature Distribution and Heat Flux on the EAST Divertor Targets in H-Mode[J]. Plasma Science and Technology, 2013, 15(3): 225-229. DOI: 10.1088/1009-0630/15/3/07 |
[8] | WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439. |
[9] | XU Ming, XU Xiaoyuan, WEN Yizhi, MA Jinxiu, XIE Jinlin, GAO Bingxi, LAN Tao, LIU Adi, YU Yi, HE Yinghua, WAN Baonian, HU Liqun, GAO Xiang. Electron Cyclotron Emission Imaging on the EAST Tokamak[J]. Plasma Science and Technology, 2011, 13(2): 167-171. |
[10] | ZHONG Guoqiang, HU Liqun, LI Xiaoling, LIN Shiyao, ZHOU Ruijie. Measurement of Neutron Flux at the Initial Phase of Discharge in EAST[J]. Plasma Science and Technology, 2011, 13(2): 162-166. |