Citation: | Changyan DONG, Hongxia YU, Lanxiang SUN, Yang LI, Xiuye LIU, Ping ZHOU, Shaowen HUANG. Characteristics of laser-induced breakdown spectroscopy of liquid slag[J]. Plasma Science and Technology, 2024, 26(2): 025502. DOI: 10.1088/2058-6272/ad0c25 |
Rapid online analysis of liquid slag is essential for optimizing the quality and energy efficiency of steel production. To investigate the key factors that affect the online measurement of refined slag using laser-induced breakdown spectroscopy (LIBS), this study examined the effects of slag composition and temperature on the intensity and stability of the LIBS spectra. The experimental temperature was controlled at three levels: 1350 °C, 1400 °C, and 1450 °C. The results showed that slag composition and temperature significantly affected the intensity and stability of the LIBS spectra. Increasing the Fe content and temperature in the slag reduces its viscosity, resulting in an enhanced intensity and stability of the LIBS spectra. Additionally, 42 refined slag samples were quantitatively analyzed for Fe, Si, Ca, Mg, Al, and Mn at 1350 °C, 1400 °C, and 1450 °C. The normalized full spectrum combined with partial least squares (PLS) quantification modeling was used, using the Ca II 317.91 nm spectral line as an internal standard. The results show that using the internal standard normalization method can significantly reduce the influence of spectral fluctuations. Meanwhile, a temperature of 1450 °C has been found to yield superior results compared to both 1350 °C and 1400 °C, and it is advantageous to conduct a quantitative analysis of the slag when it is in a “water-like” state with low viscosity.
[1] |
Huang Y et al 2012 Proc. Envi. Sci. 16 791 doi: 10.1016/j.proenv.2012.10.108
|
[2] |
Guo J et al 2018 Waste Manage. 78 318 doi: 10.1016/j.wasman.2018.04.045
|
[3] |
Pan D A et al 2019 Resour. Conserv. Recy. 146 140 doi: 10.1016/j.resconrec.2019.03.036
|
[4] |
Piatak N M et al 2015 Appl. Geochem. 57 236 doi: 10.1016/j.apgeochem.2014.04.009
|
[5] |
Wang Z et al 2016 Isij. Int. 56 723 doi: 10.2355/isijinternational.ISIJINT-2015-542
|
[6] |
Pang Z et al 2020 Metall. Mater. Trans. B. 51 51B doi: 10.1007/s11661-019-05556-8
|
[7] |
Yang S et al 2018 Chin. J. Process. Eng. 18 1013
|
[8] |
Gupta A K et al 2020 Minerals 10 855
|
[9] |
Tang H et al 2015 Anal. Methods 7 9171 doi: 10.1039/C5AY02208H
|
[10] |
Wang J et al 2015 Plasma. Sci. Technol. 17 649 doi: 10.1088/1009-0630/17/8/07
|
[11] |
Li X et al 2019 J. Anal. At. Spectrom. 34 1135 doi: 10.1039/C9JA00035F
|
[12] |
Xing L I et al 2015 Ironmak. Steelmak. 9 41
|
[13] |
Mccreery R L and Cooper J B 2001 Appl. Spectrosc. 55 295 doi: 10.1366/0003702011953333
|
[14] |
Chaplin M H and Dixon A R 1974 Appl. Spectrosc. 28 5 doi: 10.1366/000370274774332894
|
[15] |
Bergmann U et al 2001 J. Phys. Chem. B 102 8350
|
[16] |
Guo L B et al 2021 Front. Phys. 16 22500
|
[17] |
Hahn D W and Omenetto N 2012 Appl. Spectrosc. 66 347 doi: 10.1366/11-06574
|
[18] |
Reinhard et al 2014 Spectrochim. Acta. B 93 41 doi: 10.1016/j.sab.2014.02.001
|
[19] |
Hussain T and Gondal M A 2013 J. Phys. Conf. 439 12
|
[20] |
Palagas C et al 2007 Steel. Res. Int. 78 693 doi: 10.1002/srin.200706271
|
[21] |
Sturm V et al 2014 Anal. Chem. 86 9687 doi: 10.1021/ac5022425
|
[22] |
Ma Y W and Ma C H 2020 J. Laser. Appl. 40 115 (in Chinese)
|
[23] |
Su Y L and Wu L J 2002 Iron Steel Vanadium Titanium 3 9 (in Chinese)
|
[24] |
Zhang X F et al 2016 Steel. Res. Int. 87 87 doi: 10.1002/srin.201400523
|
[25] |
Dai X and Zhang C F 2005 T. Nonferr. Metal. Soc. 4 2 (in Chinese)
|
[26] |
She W W et al 2019 Metal. Chin. 29 13 (in Chinese)
|
[27] |
Chen X L et al 2014 Acta. Photonica. Sinic. 43 120 (in Chinese)
|
[28] |
Henseler et al 2015 Comput. Stat. Data. An. 81 10 doi: 10.1016/j.csda.2014.07.008
|
[29] |
Lowry P B and Gaskin J 2014 IEEE. T. Prof. Commun. 57 123 doi: 10.1109/TPC.2014.2312452
|
[1] | Ping WANG, Guanghai HU, Ning YAN, Guosheng XU, Lingyi MENG, Zhikang LU, Lin YU, Manni JIA, Yifeng WANG, Liang CHEN, Heng LAN, Xiang LIU, Mingfu WU, Liang WANG. Experimental investigation of scrape-off layer blob high density transition in L-mode plasmas on EAST[J]. Plasma Science and Technology, 2022, 24(7): 075103. DOI: 10.1088/2058-6272/ac5f82 |
[2] | Feng XU (徐峰), Fang DING (丁芳), Xiahua CHEN (陈夏华), Liang WANG (王亮), Jichan XU (许吉禅), Zhenhua HU (胡振华), Hongmin MAO (毛红敏), Guangnan LUO (罗广南), Zhongshi YANG (杨钟时), Jingbo CHEN (陈竞博), Kedong LI (李克栋). Electron density calculation based on Stark broadening of D Balmer line from detached plasma in EAST tungsten divertor[J]. Plasma Science and Technology, 2018, 20(10): 105102. DOI: 10.1088/2058-6272/aad226 |
[3] | Pengfei ZHANG (张鹏飞), Ling ZHANG (张凌), Zhenwei WU (吴振伟), Zong XU (许棕), Wei GAO (高伟), Liang WANG (王亮), Qingquan YANG (杨清泉), Jichan XU (许吉禅), Jianbin LIU (刘建斌), Hao QU (屈浩), Yong LIU (刘永), Juan HUANG (黄娟), Chengrui WU (吴成瑞), Yumei HOU (侯玉梅), Zhao JIN (金钊), J D ELDER, Houyang GUO (郭后扬). OEDGE modeling of plasma contamination efficiency of Ar puffing from different divertor locations in EAST[J]. Plasma Science and Technology, 2018, 20(4): 45104-045104. DOI: 10.1088/2058-6272/aaa7e8 |
[4] | Zhigang ZHU (朱志刚), Qiyong ZHANG (张启勇), Yuntao SONG (宋云涛), Ming ZHUANG (庄明), Zhiwei ZHOU (周芷伟), Anyi CHENG (成安义), Ping ZHU (朱平). Present status and one upgrading method with a cold compressor of the EAST sub-cooling helium cryogenic system[J]. Plasma Science and Technology, 2017, 19(5): 55603-055603. DOI: 10.1088/2058-6272/aa58da |
[5] | Guozhong DENG (邓国忠), Xiaoju LIU (刘晓菊), Liang WANG (王亮), Shaocheng LIU (刘少承), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Xiang GAO (高翔). Modeling of divertor power footprint widths on EAST by SOLPS5.0/B2.5-Eirene[J]. Plasma Science and Technology, 2017, 19(4): 45101-045101. DOI: 10.1088/2058-6272/aa5802 |
[6] | Guozhong DENG (邓国忠), Liang WANG (王亮), Xiaoju LIU (刘晓菊), Yanmin DUAN (段艳敏), Jiansheng HU (胡建生), Changzheng LI (李长征), Ling ZHANG (张凌), Shaocheng LIU (刘少承), Huiqian WANG (汪惠乾), Liang CHEN (陈良), Jichan XU (许吉禅), Wei FENG (冯威), Jianbin LIU (刘建斌), Huan LIU (刘欢), Guosheng XU (徐国盛), Houyang GUO (郭后扬), Xiang GAO (高翔), the EAST team. Achieving temporary divertor plasma detachment with MARFE events by pellet injection in the EAST superconducting tokamak[J]. Plasma Science and Technology, 2017, 19(1): 15101-015101. DOI: 10.1088/1009-0630/19/1/015101 |
[7] | LU Xiaofei (陆小飞), FU Peng (傅鹏), ZHUANG Ming (庄明), QIU Lilong (邱立龙), HU Liangbing (胡良兵). Process Modeling and Dynamic Simulation for EAST Helium Refrigerator[J]. Plasma Science and Technology, 2016, 18(6): 693-698. DOI: 10.1088/1009-0630/18/6/18 |
[8] | FU Bao(付豹), ZHANG Qiyong(张启勇), ZHU Ping(朱平), CHENG Anyi(成安义). The Application and Improvement of Helium Turbines in the EAST Cryogenic System[J]. Plasma Science and Technology, 2014, 16(5): 527-531. DOI: 10.1088/1009-0630/16/5/14 |
[9] | ZHANG Shoubiao(张寿彪), GAO Xiang(高翔), LING Bili(凌必利), WANG Yumin(王嵎民), ZHANG Tao(张涛), HAN Xiang(韩翔), LIU Zixi(刘子奚), BU Jingliang(布景亮), LI Jiangang(李建刚), EAST team. Density Profile and Fluctuation Measurements by Microwave Reflectometry on EAST[J]. Plasma Science and Technology, 2014, 16(4): 311-315. DOI: 10.1088/1009-0630/16/4/02 |
[10] | WANG Liang, XU Guosheng, CHANG Jiafeng, ZHANG Wei, YAN Ning, DING Siye..... Study of Scrape-Off-Layer Width in Ohmic and Lower Hybrid Wave Heated Double-Null Divertor Plasma in EAST[J]. Plasma Science and Technology, 2011, 13(4): 435-439. |
1. | Yan, Y., Yang, X., Ning, P. et al. Cu/TiO2 adsorbents modified by air plasma for adsorption–oxidation of H2S. Journal of Environmental Sciences (China), 2025. DOI:10.1016/j.jes.2023.09.023 |
2. | Yu, G., Peng, B., Jiang, N. et al. Influence of rotating dielectric barrier on discharge characteristics in multi-needle-plate DBD. Plasma Processes and Polymers, 2024, 21(4): 2300176. DOI:10.1002/ppap.202300176 |
3. | Truong, V.N., Truong, H.T., Siregar, Y. et al. Atmospheric Pressure Plasma Jet (APPJ) Generation using Industrial Frequency Alternative Power Source. 2024. DOI:10.1109/ATiGB63471.2024.10717715 |
4. | Yu, G., Jiang, N., Peng, B. et al. Study on the plasma characteristics in a needle-plate dielectric barrier discharge with a rotating dielectric plate. Journal of Applied Physics, 2023, 133(8): 083302. DOI:10.1063/5.0136280 |
5. | Huang, Y., Qing, Y., Chen, Y. et al. NiFe Nanoparticle Encapsulated into Wood Carbon for Efficient Oxygen Evolution: Effect of Wood Delignification. ACS Sustainable Chemistry and Engineering, 2022, 10(46): 15233-15242. DOI:10.1021/acssuschemeng.2c04902 |