Citation: | Hao XU, Shaobo GONG, Yi YU, Min XU, Tao LAN, Zhibin WANG, Zhongbing SHI, Lin NIE, Guangyi ZHAO, Hao LIU, Yixuan ZHOU, Zihao YUAN, Chenyu XIAO, Jian CHEN. Optical design of a novel near-infrared phase contrast imaging (NI-PCI) diagnostic on the HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034005. DOI: 10.1088/2058-6272/ad0e0b |
The optical design of near-infrared phase contrast imaging (NI-PCI) diagnosis on HL-2A is introduced in this paper. This scheme benefits from the great progress of near-infrared laser technology and is a broadening of traditional phase contrast technology. This diagnostic can work as a keen tool to measure plasma wavenumber spectra by inferring string-integrated plasma density fluctuations. Design of both the front optical path which is the path before the laser transmitting into the tokamak plasma and the rear optics which is the path after the laser passing through the plasma is detailed. The 1550 nm laser is chosen as the probe beam and high-precision optical components are designed to fit the laser beam, in which a phase plate with a 194-nm-deep silver groove is the key. Compared with the conventional 10.6 μm laser-based PCI system on HL-2A, NI-PCI significantly overcomes the unwanted phase scintillation effect and promotes the measurement capability of high-wavenumber turbulence with an increased maximal measurable wavenumber from 15 cm−1 to 32.6 cm−1.
[1] |
Horton W 1999 Rev. Mod. Phys. 71 735 doi: 10.1103/RevModPhys.71.735
|
[2] |
Conner J W and Wilson H R 1994 Plasma Phys. Control. Fusion 36 719 doi: 10.1088/0741-3335/36/5/002
|
[3] |
Jenko F et al 2000 Phys. Plasmas 7 1904 doi: 10.1063/1.874014
|
[4] |
Merz F and Jenko F 2010 Nucl. Fusion 50 054005 doi: 10.1088/0029-5515/50/5/054005
|
[5] |
Zhou Y X et al 2021 Plasma Sci. Technol. 23 075105 doi: 10.1088/2058-6272/ac0327
|
[6] |
Zweben S J et al 2017 Rev. Sci. Instrum. 88 041101 doi: 10.1063/1.4981873
|
[7] |
Shi Z B et al 2016 Rev. Sci. Instrum. 87 113501 doi: 10.1063/1.4966680
|
[8] |
Shen H G et al 2015 Nucl. Fusion 55 093004 doi: 10.1088/0029-5515/55/9/093004
|
[9] |
Gong S B et al 2017 Fusion Eng. Des. 123 802 doi: 10.1016/j.fusengdes.2017.04.072
|
[10] |
Gong S B et al 2019 Plasma Sci. Technol. 21 084001 doi: 10.1088/2058-6272/ab0054
|
[11] |
Tsujii N 2012 Studies of ICRF mode conversion with phase contrast imaging and full-wave simulations in Alcator C-Mod PhD Thesis Massachusetts Institute of Technology, Cambridge
|
[12] |
Mazurenko A 2001 Phase contrast imaging on the Alcator C-Mod tokamak PhD Thesis Massachusetts Institute of Technology, Cambridge
|
[13] |
Gong S B et al 2018 Fusion Eng. Des. 133 99 doi: 10.1016/j.fusengdes.2018.06.003
|
[14] |
Marinoni A et al 2022 J. Instrum. 17 C06011 doi: 10.1088/1748-0221/17/06/P06011
|
[15] |
Coda S 1997 An experimental study of turbulence by phase-contrast imaging in the DIII-D takamak PhD Thesis Massachusetts Institute of Technology, Cambridge
|
[16] |
Sander H 1988 Exp. Tech. Phys. 36 141
|
[1] | Weiji LIU, Youjian ZHANG, Xiaohua ZHU, Yunxu LUO. The influence of pore characteristics on rock fragmentation mechanism by high-voltage electric pulse[J]. Plasma Science and Technology, 2023, 25(5): 055502. DOI: 10.1088/2058-6272/acab42 |
[2] | Yunxiao CAO (曹云霄), Zhiqiang WANG (王志强), Fei MA (马飞), Zhengwei XING (邢政伟), Zheng LIU (刘征), Guofeng LI (李国锋). Direct impact characteristics of magnesite fragmentation by pulsed discharge in water[J]. Plasma Science and Technology, 2019, 21(7): 74011-074011. DOI: 10.1088/2058-6272/ab024d |
[3] | Shuqun WU (吴淑群), Xueyuan LIU (刘雪原), Guowang HUANG (黄国旺), Chang LIU (刘畅), Weijie BIAN (卞伟杰), Chaohai ZHANG (张潮海). Influence of high-voltage pulse parameters on the propagation of a plasma synthetic jet[J]. Plasma Science and Technology, 2019, 21(7): 74007-074007. DOI: 10.1088/2058-6272/ab00b0 |
[4] | Qianyu ZHOU (周乾宇), Liqing TONG (童立青), Kefu LIU (刘克富). Research of magnetic self-balance used in a repetitive high voltage rectangular waveform pulse adder[J]. Plasma Science and Technology, 2018, 20(1): 14007-014007. DOI: 10.1088/2058-6272/aa8e93 |
[5] | QI Haicheng (齐海成), GAO Wei (高巍), FAN Zhihui (樊智慧), LIU Yidi (刘一荻), REN Chunsheng (任春生). Volume Diffuse Dielectric Barrier Discharge Plasma Produced by Nanosecond High Voltage Pulse in Airflow[J]. Plasma Science and Technology, 2016, 18(5): 520-524. DOI: 10.1088/1009-0630/18/5/13 |
[6] | LIU Yan (刘燕), YANG Li (杨丽), YANG Gang (杨刚), ZHANG Yanzong (张延宗), ZHANG Xiaohong (张小洪), DENG Shihuai (邓仕槐). Degradation of Dye Wastewater by Pulsed High-Voltage Discharge Combined with Spent Tea Leaves[J]. Plasma Science and Technology, 2014, 16(12): 1135-1140. DOI: 10.1088/1009-0630/16/12/09 |
[7] | WANG Lei(王磊), HUANG Yiyun(黄懿赟), ZHAO Yanping(赵燕平), ZHANG Jian(张健), YANG Lei(杨磊), GUO Wenjun(郭文军). Structure Design and Analysis of High-Voltage Power Supply for ECRH[J]. Plasma Science and Technology, 2014, 16(11): 1079-1082. DOI: 10.1088/1009-0630/16/11/15 |
[8] | GE Lei(葛蕾), ZHANG Yuantao(张远涛). A Simple Model for the Calculation of Plasma Impedance in Atmospheric Radio Frequency Discharges[J]. Plasma Science and Technology, 2014, 16(10): 924-929. DOI: 10.1088/1009-0630/16/10/05 |
[9] | GONG Jianying (巩建英), ZHANG Xingwang (张兴旺), WANG Xiaoping (王小平), LEI Lecheng (雷乐成). Oxidation of S(IV) in Seawater by Pulsed High Voltage Discharge Plasma with TiO 2 /Ti Electrode as Catalyst[J]. Plasma Science and Technology, 2013, 15(12): 1209-1214. DOI: 10.1088/1009-0630/15/12/09 |
[10] | LI Wenqin (李文琴 ), WEN Xiaoqiong ( 温小琼 ), ZHANG Jialiang (张家良). Photographic Study on Spark Discharge Generated by a Nanosecond High-Voltage Pulse over a Water Surface[J]. Plasma Science and Technology, 2013, 15(10): 1020-1024. DOI: 10.1088/1009-0630/15/10/11 |
1. | Salewski, M., Spong, D.A., Aleynikov, P. et al. Energetic particle physics: Chapter 7 of the special issue: on the path to tokamak burning plasma operation. Nuclear Fusion, 2025, 65(4): 043002. DOI:10.1088/1741-4326/adb763 |
2. | Zhang, L.L., Jhang, H.G., Kang, J.S. et al. M3D-K simulations of beam-driven instabilities in an energetic particle dominant KSTAR discharge. Nuclear Fusion, 2024, 64(7): 076001. DOI:10.1088/1741-4326/ad4535 |
3. | Wang, H., Jiang, S., Liu, T. et al. Effects of diamagnetic drift on nonlinear interaction between multi-helicity neoclassical tearing modes. Chinese Physics B, 2024, 33(6): 065202. DOI:10.1088/1674-1056/ad24d3 |
4. | Ren, Z., Wang, F., Cai, H. et al. Influence of toroidal rotation on nonlinear evolution of tearing mode in tokamak plasmas. Plasma Physics and Controlled Fusion, 2023, 65(1): 015007. DOI:10.1088/1361-6587/aca4f4 |
5. | Cai, H., Li, D. Recent progress in the interaction between energetic particles and tearing modes. National Science Review, 2022, 9(11): nwac019. DOI:10.1093/nsr/nwac019 |
6. | Jiang, S., Tang, W., Wei, L. et al. Effects of plasma radiation on the nonlinear evolution of neo-classical tearing modes in tokamak plasmas. Plasma Science and Technology, 2022, 24(5): 055101. DOI:10.1088/2058-6272/ac500b |
7. | Liu, T., Wei, L., Wang, F. et al. Coriolis Force Effect on Suppression of Neo-Classical Tearing Mode Triggered Explosive Burst in Reversed Magnetic Shear Tokamak Plasmas. Chinese Physics Letters, 2021, 38(4): 045204. DOI:10.1088/0256-307X/38/4/045204 |