Citation: | Xutao XU, Tianchao XU, Chijie XIAO, Zuyu ZHANG, Renchuan HE, Ruixin YUAN, Ping XU. Reconstruction of poloidal magnetic field profiles in field-reversed configurations with machine learning in laser-driven ion-beam trace probe[J]. Plasma Science and Technology, 2024, 26(3): 034012. DOI: 10.1088/2058-6272/ad1042 |
The diagnostic of poloidal magnetic field (Bp) in field-reversed configuration (FRC), promising for achieving efficient plasma confinement due to its high β, is a huge challenge because Bp is small and reverses around the core region. The laser-driven ion-beam trace probe (LITP) has been proven to diagnose the Bp profile in FRCs recently, whereas the existing iterative reconstruction approach cannot handle the measurement errors well. In this work, the machine learning approach, a fast-growing and powerful technology in automation and control, is applied to Bp reconstruction in FRCs based on LITP principles and it has a better performance than the previous approach. The machine learning approach achieves a more accurate reconstruction of Bp profile when 20% detector errors are considered, 15% Bp fluctuation is introduced and the size of the detector is remarkably reduced. Therefore, machine learning could be a powerful support for LITP diagnosis of the magnetic field in magnetic confinement fusion devices.
This work was supported by the National MCF Energy R&D Program of China (No. 2018YFE0303100) and National Natural Science Foundation of China (No. 11975038).
[1] |
Gota H et al 2019 Nucl. Fusion 59 112009 doi: 10.1088/1741-4326/ab0be9
|
[2] |
Tuszewski M 1988 Nucl. Fusion 28 008 doi: 10.1088/0029-5515/28/7/008
|
[3] |
Yang X et al 2018 J. Instrum. 13 C03034 doi: 10.1088/1748-0221/13/03/C03034
|
[4] |
Yang X et al 2018 Rev. Sci. Instrum. 89 10I130 doi: 10.1063/1.5039426
|
[5] |
Yang X Y et al 2016 Rev. Sci. Instrum. 87 11D608 doi: 10.1063/1.4960761
|
[6] |
Yang X Y et al 2014 Rev. Sci. Instrum. 85 11E429 doi: 10.1063/1.4893427
|
[7] |
Xu T C et al 2022 Phys. Plasmas 29 062506 doi: 10.1063/5.0092387
|
[8] |
Kates-Harbeck J, Svyatkovskiy A and Tang W 2019 Nature 568 526 doi: 10.1038/s41586-019-1116-4
|
[9] |
Degrave J et al 2022 Nature 602 414 doi: 10.1038/s41586-021-04301-9
|
[10] |
Wan C G et al 2023 Nucl. Fusion 63 056019 doi: 10.1088/1741-4326/acbfcc
|
[11] |
Yan H L et al 2023 Plasma Phys. Control. Fusion 65 055010 doi: 10.1088/1361-6587/acc689
|
[12] |
Armstrong W T et al 1981 Phys. Fluids 24 2068 doi: 10.1063/1.863303
|
[13] |
Conti F et al 2014 Phys. Plasmas 21 022511 doi: 10.1063/1.4866144
|
[14] |
Ma H J et al 2021 Nucl. Fusion 61 036046 doi: 10.1088/1741-4326/abdac1
|
[15] |
Deng B H et al 2016 Rev. Sci. Instrum. 87 11E125 doi: 10.1063/1.4959575
|
[1] | Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817 |
[2] | Yifei ZHAO, Yueqiang LIU, Guangzhou HAO, Zhengxiong WANG, Guanqi DONG, Shuo WANG, Chunyu LI, Guanming YANG, Yutian MIAO, Yongqin WANG. Loss of energetic particles due to feedback control of resistive wall mode in HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104002. DOI: 10.1088/2058-6272/ad547e |
[3] | Dongkuan LIU, Weixing DING, Wenzhe MAO, Qiaofeng ZHANG, Longlong SANG, Quanming LU, Jinlin XIE. Bench test of interferometer measurement for the Keda Reconnection eXperiment device (KRX)[J]. Plasma Science and Technology, 2022, 24(6): 064005. DOI: 10.1088/2058-6272/ac5789 |
[4] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[5] | Tongyu WU (吴彤宇), Wei ZHANG (张伟), Haoxi WANG (王浩西), Yan ZHOU (周艳), Zejie YIN (阴泽杰). Research on the phase adjustment method for dispersion interferometer on HL-2A tokamak[J]. Plasma Science and Technology, 2018, 20(6): 65601-065601. DOI: 10.1088/2058-6272/aaaa19 |
[6] | Gen LI (李根), Xuechao WEI (魏学朝), Haiqing LIU (刘海庆), Junjie SHEN (申俊杰), Yinxian JIE (揭银先), Hui LIAN (连辉), Long ZENG (曾龙), Zhiyong ZOU (邹志勇), Jibo ZHANG (张际波), Shouxin WANG (王守信). Development of an HCN dual laser for the interferometer on EAST[J]. Plasma Science and Technology, 2017, 19(8): 84003-084003. DOI: 10.1088/2058-6272/aa667b |
[7] | LI Yonggao (李永高), ZHOU Yan (周艳), YUAN Baoshan (袁保山), DENG Zhongchao (邓中朝), ZHANG Boyu (张博宇), LI Yuan (李远), DENG Wei (邓玮), WANG Haoxi (王浩西), YI Jiang (易江), HL-A Team. Application of the Magnetic Surface Based PARK-Matrix Method in the HCOOH Laser Interferometry System on HL-2A[J]. Plasma Science and Technology, 2016, 18(12): 1198-1203. DOI: 10.1088/1009-0630/18/12/10 |
[8] | LIU Yong (刘永), Stefan SCHMUCK, ZHAO Hailin (赵海林), John FESSEY, Paul TRIMBLE, LIU Xiang (刘祥), ZHU Zeying (朱则英), ZANG Qing (臧庆), HU Liqun (胡立群). A Michelson Interferometer for Electron Cyclotron Emission Measurements on EAST[J]. Plasma Science and Technology, 2016, 18(12): 1148-1154. DOI: 10.1088/1009-0630/18/12/02 |
[9] | SHI Peiwan (施培万), SHI Zhongbing (石中兵), CHEN Wei (陈伟), ZHONG Wulyu (钟武律), YANG Zengchen (杨曾辰), JIANG Min (蒋敏), ZHANG Boyu (张博宇), LI Yonggao (李永高), YU Liming (于利明), LIU Zetian (刘泽田), DING Xuantong (丁玄同). Multichannel Microwave Interferometer for Simultaneous Measurement of Electron Density and its Fluctuation on HL-2A Tokamak[J]. Plasma Science and Technology, 2016, 18(7): 708-713. DOI: 10.1088/1009-0630/18/7/02 |
[10] | LI Gongshun (李恭顺), YANG Yao (杨曜), LIU Haiqing (刘海庆), JIE Yinxian (揭银先), ZOU Zhiyong (邹志勇), WANG Zhengxing (王正兴), ZENG Long (曾龙), WEI Xuechao (魏学朝), LI Weiming (李维明), LAN Ting (兰婷), ZHU Xiang (朱翔), LIU Yukai (刘煜锴), GAO Xiang (高翔). Bench Test of the Vibration Compensation Interferometer for EAST Tokamak[J]. Plasma Science and Technology, 2016, 18(2): 206-210. DOI: 10.1088/1009-0630/18/2/19 |
1. | Choi, M.-S., Kim, S.-J., Lee, Y.-S. et al. Computational Analysis on Self-Resonance Frequency of Solenoid and Planar Inductor. Applied Science and Convergence Technology, 2023, 32(2): 54-57. DOI:10.5757/ASCT.2023.32.2.54 |