Citation: | Yixuan ZHOU, Yi YU, Min XU, Rui KE, Lin NIE, Hao XU, Guangyi ZHAO, Hao LIU, Zihao YUAN, Chenyu XIAO, Jiquan LI, Chijie XIAO, the HL-2A Team. Progress of Lyman-alpha-based beam emission spectroscopy (LyBES) diagnostic on the HL-2A tokamak[J]. Plasma Science and Technology, 2024, 26(3): 034016. DOI: 10.1088/2058-6272/ad162a |
An edge Lyman-alpha-based beam emission spectroscopy (LyBES) diagnostic, using a heating NBI (neutral beam injection) system, is currently under development on the HL-2A tokamak. The 20-channel edge LyBES, which is intended to measure the density fluctuation in plasma edge (from R = 1960 mm to R = 2026 mm) with an improved spatial resolution of 3.3 mm, is a complement to the existing conventional beam emission spectroscopy (BES) diagnostic. In this article, we introduce the progress of LyBES diagnostic, including the collection optics, the monochromator, and the detector system. The reflectance of the collection mirrors is measured to be ~82% at 122 nm, and the aberration geometrical radius of the collection optics is tested to be ~150 μm in the aimed area. The linear dispersion of the LyBES monochromator is designed to be ~0.09 nm mm−1. The bandwidth of the detector system with the 5×107 V A−1 preamplifier gain is measured to be ~280 kHz, and the peak-to-peak noise of the detector system is tested to be ~16 mV. The finalized design, components development and testing of the LyBES diagnostic have been completed at present, and an overall performance of the LyBES diagnostic is to be confirmed in the next HL-2A campaign.
[1] |
Callen J D 1990 Phys. Fluids B: Plasma Phys. 2 2869
|
[2] |
Wootton A J et al 1990 Phys. Fluids B: Plasma Phys. 2 2879
|
[3] |
Doyle E J et al 2007 Nucl. Fusion 47 S18 doi: 10.1088/0029-5515/47/6/S02
|
[4] |
Uzun-Kaymak I, Fonck R J and Mckee G R 2012 Rev. Sci. Instrum. 83 10D526 doi: 10.1063/1.4733548
|
[5] |
Nagayama Y et al 1991 Phys. Rev. Lett. 67 3527 doi: 10.1103/PhysRevLett.67.3527
|
[6] |
Maqueda R J et al 2001 Rev. Sci. Instrum. 72 931 doi: 10.1063/1.1321009
|
[7] |
McKee G et al 1999 Rev. Sci. Instrum. 70 913 doi: 10.1063/1.1149416
|
[8] |
Field A R et al 2009 Rev. Sci. Instrum. 80 073503 doi: 10.1063/1.3170034
|
[9] |
Smith D R et al 2010 Rev. Sci. Instrum. 81 10D717 doi: 10.1063/1.3478660
|
[10] |
Bespamyatnov I O et al 2010 Rev. Sci. Instrum. 81 10D709 doi: 10.1063/1.3475707
|
[11] |
Paul S F and Fonck R J 1990 Rev. Sci. Instrum. 61 3496 doi: 10.1063/1.1141557
|
[12] |
Nam Y U et al 2014 Rev. Sci. Instrum. 85 11E434 doi: 10.1063/1.4894839
|
[13] |
Ke R et al 2018 Rev. Sci. Instrum. 89 10D122 doi: 10.1063/1.5039350
|
[14] |
Yu Y et al 2021 J. Fusion Eng. 40 13 doi: 10.1007/s10894-021-00302-8
|
[15] |
Hutchinson I H 2002 Plasma Phys. Control. Fusion 44 71 doi: 10.1088/0741-3335/44/1/307
|
[16] |
McKee G R et al 2001 Rev. Sci. Instrum. 72 992 doi: 10.1063/1.1323246
|
[17] |
Zhou Y X et al 2021 Plasma Sci. Technol. 23 075105 doi: 10.1088/2058-6272/ac0327
|
[18] |
Zhou Y X et al 2021 Fusion Eng. Des. 172 112911 doi: 10.1016/j.fusengdes.2021.112911
|
[19] |
Boivin R L et al 2001 Rev. Sci. Instrum. 72 961 doi: 10.1063/1.1319362
|
[20] |
Degeling A W et al 2004 Rev. Sci. Instrum. 75 4139 doi: 10.1063/1.1787131
|
[21] |
Maan A et al 2023 Nucl. Mater. Energy 35 101408 doi: 10.1016/j.nme.2023.101408
|
[22] |
Rosenthal A M et al 2021 Rev. Sci. Instrum. 92 033523 doi: 10.1063/5.0024115
|
[23] |
Soukhanovskii V A et al 2010 Rev. Sci. Instrum. 81 10D723 doi: 10.1063/1.3478749
|
[1] | Jerzy MIZERACZYK, Artur BERENDT. Introduction to investigations of the negative corona and EHD flow in gaseous two-phase fluids[J]. Plasma Science and Technology, 2018, 20(5): 54020-054020. DOI: 10.1088/2058-6272/aab602 |
[2] | Xuebao LI (李学宝), Dayong LI (李大勇), Qian ZHANG (张迁), Yinfei LI (李隐飞), Xiang CUI (崔翔), Tiebing LU (卢铁兵). The detailed characteristics of positive corona current pulses in the line-to-plane electrodes[J]. Plasma Science and Technology, 2018, 20(5): 54014-054014. DOI: 10.1088/2058-6272/aaa66b |
[3] | Zelong ZHANG (张泽龙), Jie SHEN (沈洁), Cheng CHENG (程诚), Zimu XU (许子牧), Weidong XIA (夏维东). Generation of reactive species in atmospheric pressure dielectric barrier discharge with liquid water[J]. Plasma Science and Technology, 2018, 20(4): 44009-044009. DOI: 10.1088/2058-6272/aaa437 |
[4] | Bingyan CHEN (陈秉岩), Xiangxiang GAO (高香香), Ke CHEN (陈可), Changyu LIU (刘昌裕), Qinshu LI (李沁书), Wei SU (苏巍), Yongfeng JIANG (蒋永锋), Xiang HE (何湘), Changping ZHU (朱昌平), Juntao FEI (费峻涛). Regulation characteristics of oxide generation and formaldehyde removal by using volume DBD reactor[J]. Plasma Science and Technology, 2018, 20(2): 24009-024009. DOI: 10.1088/2058-6272/aa9b7a |
[5] | Feng LIU (刘峰), Bo ZHANG (张波), Zhi FANG (方志), Wenchun WANG (王文春). Generation of reactive atomic species of positive pulsed corona discharges in wetted atmospheric flows of nitrogen and oxygen[J]. Plasma Science and Technology, 2017, 19(6): 64008-064008. DOI: 10.1088/2058-6272/aa632f |
[6] | Di XU (徐迪), Zehua XIAO (肖泽铧), Chunjing HAO (郝春静), Jian QIU (邱剑), Kefu LIU (刘克富). Influence of electrical parameters on H2O2 generation in DBD non-thermal reactor with water mist[J]. Plasma Science and Technology, 2017, 19(6): 64004-064004. DOI: 10.1088/2058-6272/aa61f6 |
[7] | WEI Linsheng (魏林生), PENG Bangfa (彭邦发), LI Ming (李鸣), ZHANG Yafang (章亚芳), HU Zhaoji (胡兆吉). Dynamic Characteristics of Positive Pulsed Dielectric Barrier Discharge for Ozone Generation in Air[J]. Plasma Science and Technology, 2016, 18(2): 147-156. DOI: 10.1088/1009-0630/18/2/09 |
[8] | CHEN Bingyan (陈秉岩), ZHU Changping (朱昌平), FEI Juntao (费峻涛), HE Xiang (何湘), YIN Cheng (殷澄), WANG Yuan (王媛), JIANG Yongfeng (蒋永锋), CHEN Longwei (陈龙威), GAO Yuan (高远), HAN Qingbang (韩庆邦). Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray[J]. Plasma Science and Technology, 2016, 18(1): 41-50. DOI: 10.1088/1009-0630/18/1/08 |
[9] | CHEN Dan (陈聃), ZENG Xinwu (曾新吾), WANG Yibo (王一博). The Optical Diagnosis of Underwater Positive Sparks and Corona Discharges[J]. Plasma Science and Technology, 2014, 16(12): 1100-1105. DOI: 10.1088/1009-0630/16/12/04 |
[10] | LIU Wenzheng(刘文正), LI Chuanhui(李传辉). Study on the Generation Characteristics of Dielectric Barrier Discharge Plasmas on Water Surface[J]. Plasma Science and Technology, 2014, 16(1): 26-31. DOI: 10.1088/1009-0630/16/1/06 |
1. | Akash, R., Sarathi, R., Haddad, M. Pollution Monitoring on Polymeric Insulators Adopting Laser-Induced Breakdown Spectroscopy, Computer Vision, and Machine Learning Techniques. IEEE Transactions on Plasma Science, 2025. DOI:10.1109/TPS.2025.3539261 | |
2. | Zhang, R., Hu, S., Ma, C. et al. Laser-induced breakdown spectroscopy (LIBS) in biomedical analysis. TrAC - Trends in Analytical Chemistry, 2024. DOI:10.1016/j.trac.2024.117992 | |
3. | Yin, R., Qiao, Y., Wang, J. et al. Precise Testing Technology of Aluminum Based on SAF-LIBS Theory | [基于 SAF-LIBS 理论的铝精密检测技术研究]. Zhongguo Jiguang/Chinese Journal of Lasers, 2024, 51(17): 1711001. DOI:10.3788/CJL231557 | |
4. | Xie, W., Fu, G., Xu, J. et al. Evaluation of Sample Preparation Methods for the Classification of Children’s Ca–Fe–Zn Oral Liquid by Libs. Journal of Applied Spectroscopy, 2024, 91(1): 209-217. DOI:10.1007/s10812-024-01708-w | |
5. | Zhou, F., Xie, W., Lin, M. et al. Rapid authentication of geographical origins of Baishao (Radix Paeoniae Alba) slices with laser-induced breakdown spectroscopy based on conventional machine learning and deep learning. Spectrochimica Acta - Part B Atomic Spectroscopy, 2024. DOI:10.1016/j.sab.2023.106852 | |
6. | Peng, J., Lin, M., Xie, W. et al. Fast identification of geographical origins of Baishao (Radix Paeoniae Alba) using the deep fusion of LIBS spectrum and ablation image. Microchemical Journal, 2023. DOI:10.1016/j.microc.2023.109337 | |
7. | Wei, K., Teng, G., Wang, Q. et al. Rapid Test for Adulteration of Fritillaria Thunbergii in Fritillaria Cirrhosa by Laser-Induced Breakdown Spectroscopy. Foods, 2023, 12(8): 1710. DOI:10.3390/foods12081710 | |
8. | Wei, K., Wang, Q., Teng, G. et al. Application of Laser-Induced Breakdown Spectroscopy Combined with Chemometrics for Identification of Penicillin Manufacturers. Applied Sciences (Switzerland), 2022, 12(10): 4981. DOI:10.3390/app12104981 | |
9. | Hu, M., Ma, F., Li, Z. et al. Sensing of Soil Organic Matter Using Laser-Induced Breakdown Spectroscopy Coupled with Optimized Self-Adaptive Calibration Strategy. Sensors, 2022, 22(4): 1488. DOI:10.3390/s22041488 |