Citation: | Yihan LYU, Weiran SONG, Zongyu HOU, Zhe WANG. Incorporating empirical knowledge into data-driven variable selection for quantitative analysis of coal ash content by laser-induced breakdown spectroscopy[J]. Plasma Science and Technology, 2024, 26(7): 075509. DOI: 10.1088/2058-6272/ad370c |
Laser-induced breakdown spectroscopy (LIBS) has become a widely used atomic spectroscopic technique for rapid coal analysis. However, the vast amount of spectral information in LIBS contains signal uncertainty, which can affect its quantification performance. In this work, we propose a hybrid variable selection method to improve the performance of LIBS quantification. Important variables are first identified using Pearson’s correlation coefficient, mutual information, least absolute shrinkage and selection operator (LASSO) and random forest, and then filtered and combined with empirical variables related to fingerprint elements of coal ash content. Subsequently, these variables are fed into a partial least squares regression (PLSR). Additionally, in some models, certain variables unrelated to ash content are removed manually to study the impact of variable deselection on model performance. The proposed hybrid strategy was tested on three LIBS datasets for quantitative analysis of coal ash content and compared with the corresponding data-driven baseline method. It is significantly better than the variable selection only method based on empirical knowledge and in most cases outperforms the baseline method. The results showed that on all three datasets the hybrid strategy for variable selection combining empirical knowledge and data-driven algorithms achieved the lowest root mean square error of prediction (RMSEP) values of 1.605, 3.478 and 1.647, respectively, which were significantly lower than those obtained from multiple linear regression using only 12 empirical variables, which are 1.959, 3.718 and 2.181, respectively. The LASSO-PLSR model with empirical support and 20 selected variables exhibited a significantly improved performance after variable deselection, with RMSEP values dropping from 1.635, 3.962 and 1.647 to 1.483, 3.086 and 1.567, respectively. Such results demonstrate that using empirical knowledge as a support for data-driven variable selection can be a viable approach to improve the accuracy and reliability of LIBS quantification.
The authors are grateful for financial supports from National Natural Science Foundation of China (No. 62205172), Huaneng Group Science and Technology Research Project (No. HNKJ22-H105), Tsinghua University Initiative Scientific Research Program and the International Joint Mission on Climate Change and Carbon Neutrality.
[1] |
Sheta S et al 2019 J. Anal. At. Spectrom. 34 1047 doi: 10.1039/C9JA00016J
|
[2] |
Winefordner J D et al 2004 J. Anal. At. Spectrom. 19 1061 doi: 10.1039/b400355c
|
[3] |
Hu Z L et al 2022 Trends Analyt. Chem. 152 116618 doi: 10.1016/j.trac.2022.116618
|
[4] |
Wang Z et al 2021 Trends Analyt. Chem. 143 116385 doi: 10.1016/j.trac.2021.116385
|
[5] |
Li X L et al 2023 J. Hazard. Mater. 448 130885 doi: 10.1016/j.jhazmat.2023.130885
|
[6] |
Hou Z Y et al 2016 J. Anal. At. Spectrom. 31 722 doi: 10.1039/C5JA00475F
|
[7] |
Gu W L et al 2022 Anal. Chim. Acta 1205 339752 doi: 10.1016/j.aca.2022.339752
|
[8] |
Song W R et al 2021 J. Anal. At. Spectrom. 36 111 doi: 10.1039/D0JA00386G
|
[9] |
Cui X T et al 2021 Plasma Sci. Technol. 23 055505 doi: 10.1088/2058-6272/abf1ac
|
[10] |
Dong M R et al 2019 J. Anal. At. Spectrom. 34 480 doi: 10.1039/C8JA00414E
|
[11] |
Xing P J et al 2021 Anal. Chim. Acta 1178 338799 doi: 10.1016/j.aca.2021.338799
|
[12] |
Guezenoc J et al 2017 Spectrochim. Acta Part B: At. Spectrosc. 134 6 doi: 10.1016/j.sab.2017.05.009
|
[13] |
Bachler M O et al 2016 Spectrochim. Acta Part B: At. Spectrosc. 123 163 doi: 10.1016/j.sab.2016.08.010
|
[14] |
Yang N F et al 2010 Soil Sci. 175 447 doi: 10.1097/SS.0b013e3181f516ea
|
[15] |
Yao S C et al 2020 Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 239 118492 doi: 10.1016/j.saa.2020.118492
|
[16] |
Legnaioli S et al 2019 Spectrochim. Acta Part B: At. Spectrosc. 155 123 doi: 10.1016/j.sab.2019.03.012
|
[17] |
Zhang Y J et al 2020 Anal. Methods 12 3530 doi: 10.1039/D0AY00905A
|
[18] |
Duan F J et al 2018 Spectrochim. Acta Part B: At. Spectrosc. 143 12 doi: 10.1016/j.sab.2018.02.010
|
[19] |
Lu S Z et al 2018 Spectrochim. Acta Part B: At. Spectrosc. 150 49 doi: 10.1016/j.sab.2018.10.006
|
[20] |
Huang L X et al 2019 J. Anal. At. Spectrom. 34 460 doi: 10.1039/C8JA00442K
|
[21] |
Li M G et al 2022 J. Anal. At. Spectrom. 37 1099 doi: 10.1039/D2JA00048B
|
[22] |
Zhao Q et al 2023 Spectrochim. Acta Part: A. Mol. Biomol. Spectrosc. 287 122053 doi: 10.1016/j.saa.2022.122053
|
[23] |
Song X Y et al 2022 Optik 249 168214 doi: 10.1016/j.ijleo.2021.168214
|
[24] |
Song W R et al 2022 Spectrochim. Acta Part B: At. Spectrosc. 195 106490 doi: 10.1016/j.sab.2022.106490
|
[25] |
Song W R et al 2022 Expert Syst. Appl. 205 117756 doi: 10.1016/j.eswa.2022.117756
|
[26] |
Feng J et al 2011 Anal. Bioanal. Chem. 400 3261 doi: 10.1007/s00216-011-4865-y
|
[27] |
Hou Z Y et al 2022 Spectrochim. Acta Part B: At. Spectrosc. 191 106406 doi: 10.1016/j.sab.2022.106406
|
[28] |
Song W R et al 2021 Fuel 306 121667 doi: 10.1016/j.fuel.2021.121667
|
[29] |
Menze B H, Petrich W and Hamprecht F A 2007 Anal. Bioanal. Chem. 387 1801 doi: 10.1007/s00216-006-1070-5
|
[30] |
Menze B H et al 2009 BMC Bioinformatics 10 213 doi: 10.1186/1471-2105-10-213
|
[31] |
Wold S, Sjöström M and Eriksson L 2001 Chemometr. Intell. Lab. Syst. 58 109 doi: 10.1016/S0169-7439(01)00155-1
|
[32] |
Mehmood T and Ahmed B 2016 J. Chemom. 30 4 doi: 10.1002/cem.2762
|
[1] | H J YEOM, D H CHOI, Y S LEE, J H KIM, D J SEONG, S J YOU, H C LEE. Plasma density measurement and downstream etching of silicon and silicon oxide in Ar/NF3 mixture remote plasma source[J]. Plasma Science and Technology, 2019, 21(6): 64007-064007. DOI: 10.1088/2058-6272/ab0bd3 |
[2] | Jiali CHEN (陈佳丽), Peiyu JI (季佩宇), Chenggang JIN (金成刚), Lanjian ZHUGE (诸葛兰剑), Xuemei WU (吴雪梅). The properties of N-doped diamond-like carbon films prepared by helicon wave plasma chemical vapor deposition[J]. Plasma Science and Technology, 2019, 21(2): 25502-025502. DOI: 10.1088/2058-6272/aaee90 |
[3] | Barkahoum LAROUCI, Soumia BENDELLA, Ahmed BELASRI. Numerical investigation of Ar–NH3 mixture in homogenous DBDs[J]. Plasma Science and Technology, 2018, 20(3): 35403-035403. DOI: 10.1088/2058-6272/aaa540 |
[4] | Bin CAO (曹斌), Jiangang LI (李建刚), Jianshen HU (胡建生), Houyin WANG (王厚银). The first results of deuterium retention on EAST with a full graphite wall via particle balance[J]. Plasma Science and Technology, 2017, 19(12): 125102. DOI: 10.1088/2058-6272/aa8a5f |
[5] | WANG Jinmei (王金梅), ZHENG Peichao (郑培超), LIU Hongdi (刘红弟), FANG Liang (方亮). Spectral Characteristics of Laser-Induced Graphite Plasma in Ambient Air[J]. Plasma Science and Technology, 2016, 18(11): 1123-1129. DOI: 10.1088/1009-0630/18/11/11 |
[6] | DI Lanbo (底兰波), ZHAN Zhibin (詹志彬), ZHANG Xiuling (张秀玲), QI Bin (亓滨), XU Weijie (徐伟杰). Atmospheric-Pressure DBD Cold Plasma for Preparation of High Active Au/P25 Catalysts for Low-Temperature CO Oxidation[J]. Plasma Science and Technology, 2016, 18(5): 544-548. DOI: 10.1088/1009-0630/18/5/17 |
[7] | NIU Jinhai(牛金海), ZHANG Zhihui(张志慧), FAN Hongyu(范红玉), YANG Qi(杨杞), LIU Dongping(刘东平), QIU Jieshan(邱介山). Plasma-Assisted Chemical Vapor Deposition of Titanium Oxide Films by Dielectric Barrier Discharge in TiCl 4 /O 2 /N 2 Gas Mixtures[J]. Plasma Science and Technology, 2014, 16(7): 695-700. DOI: 10.1088/1009-0630/16/7/11 |
[8] | ZHAO Liping(赵利平), WANG Wanjing(王万景), ZHOU Haishan(周海山), WU Jing(吴婧), XIE Chunyi(谢春意), LI Qiang(李强), YANG Zhongshi(杨钟时), LUO Guangnan(罗广南). Deuterium Retention in SiC-Coated Graphite Tiles of EAST[J]. Plasma Science and Technology, 2014, 16(3): 193-196. DOI: 10.1088/1009-0630/16/3/04 |
[9] | LI Zebin(李泽斌), WU Zhonghang(吴忠航), JU Jiaqi(居家奇), HE Kongduo(何孔多), CHEN Zhenliu(陈枕流), YANG Xilu(杨曦露), YAN Hang(颜航), OU Qiongrong(区琼荣), LIANG Rongqing(梁荣庆). Enhanced Work Function of Al-Doped Zinc-Oxide Thin Films by Oxygen Inductively Coupled Plasma Treatment[J]. Plasma Science and Technology, 2014, 16(1): 79-82. DOI: 10.1088/1009-0630/16/1/17 |
[10] | CAO Lei (曹磊), SONG Yuntao (宋云涛). Preload Analysis of Screw Bolt Joints on the First Wall Graphite Tiles in EAST[J]. Plasma Science and Technology, 2012, 14(9): 850-854. DOI: 10.1088/1009-0630/14/9/15 |
1. | Zhang, X., Luo, D., Liang, P. et al. Nitrogen-doping microporous carbon nanosheets with superior adsorption and conductivity for enhancement photocatalytic water reduction. Optical Materials, 2024. DOI:10.1016/j.optmat.2024.115499 |
2. | Xing, X., Zhang, B., Li, H. et al. One stone, three birds strategy for synthesis of N-doped activated carbon-supported surface-enriched and redispersed Pd NPs via plasma for formic acid dehydrogenation. Surfaces and Interfaces, 2024. DOI:10.1016/j.surfin.2023.103690 |