Citation: | Huajian JI, Hongming ZHANG, Bo LYU, Cheonho BAE, Liang HE, Zichao LIN, Xianghui YIN, Yongcai SHEN, Shuyu DAI. Wavelength calibration and spectral analysis of vacuum ultraviolet spectroscopy in EAST[J]. Plasma Science and Technology, 2024, 26(8): 085105. DOI: 10.1088/2058-6272/ad4f24 |
A vacuum ultraviolet (VUV) spectroscopy with a focal length of 1 m has been engineered specifically for observing edge impurity emissions in Experimental Advanced Superconducting Tokamak (EAST). In this study, wavelength calibration for the VUV spectroscopy is achieved utilizing a zinc lamp. The grating angle and charge-coupled device (CCD) position are carefully calibrated for different wavelength positions. The wavelength calibration of the VUV spectroscopy is crucial for improving the accuracy of impurity spectral data, and is required to identify more impurity spectral lines for impurity transport research. Impurity spectra of EAST plasmas have also been obtained in the wavelength range of 50–300 nm with relatively high spectral resolution. It is found that the impurity emissions in the edge region are still dominated by low-Z impurities, such as carbon, oxygen, and nitrogen, albeit with the application of full-tungsten divertors on the EAST tokamak.
The authors wish to thank the EAST team. The work was partially supported by National Natural Science Foundation of China (Nos. U23A2077, 12175278 and 12205072), the National Magnetic Confinement Fusion Science Program of China (Nos. 2019YFE0304002 and 2018YFE0303103), the Comprehensive Research Facility for Fusion Technology Program of China (No. 2018-000052-73-01-001228), Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences (2021), and the University Synergy Innovation Program of Anhui Province (No. GXXT2021-029).
[1] |
Oishi T et al 2014 Appl. Opt. 53 6900 doi: 10.1364/AO.53.006900
|
[2] |
Morita S and Goto M 2003 Rev. Sci. Instrum. 74 2036 doi: 10.1063/1.1535252
|
[3] |
Maggi C F et al 1997 J. Nucl. Mater. 241–243 414 doi: 10.1016/S0022-3115(96)00539-9
|
[4] |
Field A R et al 1995 Rev. Sci. Instrum. 66 5433 doi: 10.1063/1.1146065
|
[5] |
Seon C R et al 2016 Fusion Eng. Des. 109–111 656 doi: 10.1016/j.fusengdes.2016.02.025
|
[6] |
He L et al 2021 Rev. Sci. Instrum. 92 043519 doi: 10.1063/5.0040643
|
[7] |
He L et al 2022 Plasma Sci. Technol. 24 064003 doi: 10.1088/2058-6272/ac5f81
|
[8] |
Das N C et al 2007 AIP Conf. Proc. 879 671 doi: 10.1063/1.2436151
|
[9] |
NIST 2023 Atomic spectra database Gaithersburg: NIST doi: 10.18434/T4W30F
|
[10] |
Morton D C 2003 Astrophys. J. Suppl. Ser. 149 205 doi: 10.1086/377639
|
[11] |
Mayo R, Ortiz M and Campos J 2006 Eur. Phys. J. D: Atomic Mol. Opt. Plasma Phys. 37 181
|
[12] |
Oishi T et al 2021 Plasma Sci. Technol. 23 084002 doi: 10.1088/2058-6272/abfd88
|
[13] |
Zhang H M et al 2020 Plasma Sci. Technol. 22 084001 doi: 10.1088/2058-6272/ab81a4
|
[14] |
Drake G High precision calculations for helium In: Drake G Springer Handbook of Atomic, Molecular, and Optical Physics New York: Springer 2006: 199
|
[15] |
Wan B N et al 2011 Fusion Sci. Technol. 59 631 doi: 10.13182/FST11-A11726
|
[16] |
Vogel G et al 2018 IEEE Trans. Plasma Sci. 46 1350 doi: 10.1109/TPS.2018.2798706
|
[17] |
Dai S Y et al 2021 Plasma Phys. Control. Fusion 63 025003 doi: 10.1088/1361-6587/abbf86
|