Citation: | Guangjia WANG, Shidong FANG, Baoguo LIN, Chengzhu ZHU, Jie SHEN. Mechanistic study on 4, 4'-sulfonylbis removal with CO2/Ar gas-liquid DBD plasma[J]. Plasma Science and Technology, 2024, 26(10): 105501. DOI: 10.1088/2058-6272/ad5118 |
In this study, a single dielectric barrier discharge (DBD) coaxial reactor was used to degrade 4, 4'-sulfonylbis (TBBPS) in water using greenhouse gas (CO2) and argon as the carrier gases. The investigation focused on CO2 conversion, reactive species formation, gas-liquid mass transfer mechanism, and degradation mechanism of TBBPS during the discharge plasma process. With the decrease of CO2/Ar ratio in the process of plasma discharge, the emission spectrum intensity of Ar, CO2 and excited reactive species was enhanced. This increase promoted collision and dissociation of CO2, resulting in a series of chemical reactions that improved the production of reactive species such as ·OH, 1O2, H2O2 and O3. These reactive species initiated a sequence of reactions with TBBPS. Results indicated that at a gas flow rate of 240 mL/min with a CO2/Ar ratio of 1:5, both the highest CO2 conversion rate (17.76%) and TBBPS degradation rate (94.24%) were achieved. The degradation mechanism was elucidated by determining types and contents of reactive species present in treatment liquid along with analysis of intermediate products using liquid chromatography-mass spectrometry techniques. This research provides novel insights into carbon dioxide utilization and water pollution control through dielectric barrier discharge plasma technology.
This work was supported jointly by National Natural Science Foundation of China (No. 51877208), Anhui Provincial Key R&D Programmers (No. 202004a07020047).
[1] |
Xiong P et al 2019 Environ. Sci. Technol. 53 13551 doi: 10.1021/acs.est.9b03159
|
[2] |
Pirard C and Charlier C 2018 Chemosphere 211 918 doi: 10.1016/j.chemosphere.2018.08.012
|
[3] |
Wang R et al 2023 Environ. Pollut. 334 122121 doi: 10.1016/j.envpol.2023.122121
|
[4] |
Fu Y Y et al 2019 Water Res. 150 12 doi: 10.1016/j.watres.2018.11.051
|
[5] |
Gou Y L et al 2020 Chem. Eng. J. 394 125040 doi: 10.1016/j.cej.2020.125040
|
[6] |
Trenchev G and Bogaerts A 2020 J. CO2 Util. 39 101152 doi: 10.1016/j.jcou.2020.03.002
|
[7] |
Yan X et al 2014 Chem. Eng. J. 245 41 doi: 10.1016/j.cej.2014.01.089
|
[8] |
Wang Y L et al 2019 ACS Catal. 9 10780 doi: 10.1021/acscatal.9b02538
|
[9] |
Wang L et al 2020 Chem. Commun. 56 14801 doi: 10.1039/d0cc06514e
|
[10] |
Shang K F et al 2022 Chem. Eng. J. 431 133916 doi: 10.1016/j.cej.2021.133916
|
[11] |
Shang K F, Li J and Morent R 2019 Plasma Sci. Technol. 21 043001 doi: 10.1088/2058-6272/aafbc6
|
[12] |
Lukes P Interactions of non-equilibrium plasma with liquids: physics, chemistry and applications In Proceedings of 2018 IEEE International Conference on Plasma Science Denver: IEEE 2018: 1 doi: 10.1109/icops35962.2018.9575834
|
[13] |
Wang X P et al 2021 Environ. Sci.: Water Res. Technol. 7 610 doi: 10.1039/d0ew00985g
|
[14] |
Yin N Y et al 2018 Environ. Sci. Technol. 52 5459 doi: 10.1021/acs.est.8b00414
|
[15] |
Zhou X F et al 2023 J. Phys. D: Appl. Phys. 56 455202 doi: 10.1088/1361-6463/acec81
|
[16] |
Nayak G et al 2023 Plasma Process. Polym. 20 2200222 doi: 10.1002/ppap.202200222
|
[17] |
Mei D H and Tu X 2017 ChemPhysChem 18 3253 doi: 10.1002/cphc.201700752
|
[18] |
Mercado-Cabrera A et al 2017 Plasma Sci. Technol. 19 077501 doi: 10.1088/2058-6272/aa6715
|
[19] |
Scholtz V et al 2015 Biotechnol. Adv. 33 1108 doi: 10.1016/j.biotechadv.2015.01.002
|
[20] |
Wang L et al 2018 ACS Catal. 8 90 doi: 10.1021/acscatal.7b02733
|
[21] |
Mei D H et al 2015 Plasma Sources Sci. Technol. 24 015011 doi: 10.1088/0963-0252/24/1/015011
|
[22] |
Mora E Y, Sarmiento A and Vera E 2016 J. Phys.: Conf. Ser. 687 012020 doi: 10.1088/1742-6596/687/1/012020
|
[23] |
Nagassou D et al 2020 J. CO2 Util. 38 39 doi: 10.1016/j.jcou.2020.01.007
|
[24] |
Bogaerts A et al 2017 Plasma Sources Sci. Technol. 26 063001 doi: 10.1088/1361-6595/aa6ada
|
[25] |
Shen J et al 2019 Chem. Eng. J. 362 402 doi: 10.1016/j.cej.2019.01.018
|
[26] |
Yoshio Nosaka et al 2017 Chem. Rev. 117 17 doi: 10.1021/acs.chemrev.7b00161
|
[27] |
Hall R D et al 1989 J. Biol. Chem. 264 7900 doi: 10.1016/S0021-9258(18)83128-3
|
[28] |
Ceppelli M et al 2021 Plasma Sources Sci. Technol. 30 115010 doi: 10.1088/1361-6595/ac2411
|
[29] |
Ramakers M et al 2015 Plasma Process. Polym. 12 755 doi: 10.1002/ppap.201400213
|
[30] |
Xu S J, Whitehead J C and Martin P A 2017 Chem. Eng. J. 327 764 doi: 10.1016/j.cej.2017.06.090
|
[31] |
Sarani A, Nikiforov A Y and Leys C 2010 Phys. Plasmas 17 063504 doi: 10.1063/1.3439685
|
[32] |
Zhang Z L et al 2017 Plasma Chem. Plasma Process. 37 415 doi: 10.1007/s11090-017-9784-z
|
[33] |
Liu K et al 2022 Vacuum 198 110901 doi: 10.1016/j.vacuum.2022.110901
|
[34] |
Liu Z J et al 2023 IEEE Trans. Plasma Sci. 51 2295 doi: 10.1109/tps.2023.3296112
|
[35] |
Blajan M and Shimizu K 2012 IEEE Trans. Plasma Sci. 40 1730 doi: 10.1109/tps.2012.2190994
|
[36] |
Moldgy A et al 2020 J. Phys. D: Appl. Phys. 53 434004 doi: 10.1088/1361-6463/aba066
|
[37] |
Wang X P et al 2020 Sep. Purif. Technol. 240 116659 doi: 10.1016/j.seppur.2020.116659
|
[38] |
Zhang C et al 2017 J. Hazard. Mater. 326 221 doi: 10.1016/j.jhazmat.2016.12.034
|
[39] |
Wang T C et al 2018 Chem. Eng. J. 346 65 doi: 10.1016/j.cej.2018.04.024
|
[40] |
Wang C et al 2018 Chem. Eng. J. 346 159 doi: 10.1016/j.cej.2018.03.149
|
[41] |
Ozkan A et al 2016 Plasma Sources Sci. Technol. 25 025013 doi: 10.1088/0963-0252/25/2/025013
|
[42] |
Takamatsu T et al Investigation of bacterial inactivation by various gas plasmas and electron microscopic observation of treated bacteria In: Proceedings of 2015 IEEE International Conference on Plasma Sciences Antalya: IEEE 2015 doi: 10.1109/plasma.2015.7179641
|
[1] | Tianchi WANG, Chuyu SUN, Youheng YANG, Haiyang WANG, Linshen XIE, Tao HUANG, Yingchao DU, Wei CHEN. Comparative study of pulsed breakdown processes and mechanisms in self-triggered four-electrode pre-ionized switches[J]. Plasma Science and Technology, 2022, 24(11): 115504. DOI: 10.1088/2058-6272/ac7c61 |
[2] | Tianchi WANG (王天驰), Yingchao DU (杜应超), Wei CHEN (陈伟), Junna LI (李俊娜), Haiyang WANG (王海洋), Tao HUANG (黄涛), Linshen XIE (谢霖燊), Le CHENG (程乐), Ling SHI (石凌). A low-jitter self-triggered spark-discharge pre-ionization switch: primary research on its breakdown characteristics and working mechanisms[J]. Plasma Science and Technology, 2021, 23(11): 115508. DOI: 10.1088/2058-6272/ac2420 |
[3] | Riaz KHAN, Sehrish SHAKIR, Ahmad ALI, Muhammad Khawar AYUB, Moazzam NAZIR, Zia UR-REHMAN, Abdul QAYYUM, Muhammad Athar NAVEED, Sarfraz AHMAD, Zahoor AHMAD, Rafaqat ALI, Shahid HUSSAIN. Microwave-assisted pre-ionization experiments on GLAST-III[J]. Plasma Science and Technology, 2021, 23(8): 85102-085102. DOI: 10.1088/2058-6272/ac050c |
[4] | Wei YOU (尤玮), Hong LI (李弘), Wenzhe MAO (毛文哲), Wei BAI (白伟), Cui TU (涂翠), Bing LUO (罗兵), Zichao LI (李子超), Yolbarsop ADIL (阿迪里江), Jintong HU (胡金童), Bingjia XIAO (肖炳甲), Qingxi YANG (杨庆喜), Jinlin XIE (谢锦林), Tao LAN (兰涛), Adi LIU (刘阿娣), Weixing DING (丁卫星), Chijin XIAO (肖持进), Wandong LIU (刘万东). Design of the poloidal field system for KTX[J]. Plasma Science and Technology, 2018, 20(11): 115601. DOI: 10.1088/2058-6272/aac8d5 |
[5] | Yanhui JIA (贾艳辉), Juanjuan CHEN (陈娟娟), Ning GUO (郭宁), Xinfeng SUN (孙新锋), Chenchen WU (吴辰宸), Tianping ZHANG (张天平). 2D hybrid-PIC simulation of the two and three-grid system of ion thruster[J]. Plasma Science and Technology, 2018, 20(10): 105502. DOI: 10.1088/2058-6272/aace52 |
[6] | Sen WANG (王森), Qiping YUAN (袁旗平), Bingjia XIAO (肖炳甲). Development of the simulation platform between EAST plasma control system and the tokamak simulation code based on Simulink[J]. Plasma Science and Technology, 2017, 19(3): 35601-035601. DOI: 10.1088/2058-6272/19/3/035601 |
[7] | LUO Zhiren (罗志仁), LIU Xufeng (刘旭峰), DU Shuangsong (杜双松), WANG Zhongwei (王忠伟), SONG Yuntao (宋云涛). Integrated Design System of Toroidal Field Coil for CFETR[J]. Plasma Science and Technology, 2016, 18(9): 960-966. DOI: 10.1088/1009-0630/18/9/14 |
[8] | CHEN Yun (陈云), ZHANG Jian (张健). Ultra-Low Breakdown Voltage of Field Ionization in Atmospheric Air Based on Silicon Nanowires[J]. Plasma Science and Technology, 2013, 15(11): 1081-1087. DOI: 10.1088/1009-0630/15/11/01 |
[9] | QIU Lilong (邱立龙), ZHUANG Ming (庄明), MAO Jin (毛晋), HU Liangbing (胡良兵), SHENG Linhai (盛林海). Optimization analysis and simulation of the EAST cryogenic system[J]. Plasma Science and Technology, 2012, 14(11): 1030-1034. DOI: 10.1088/1009-0630/14/11/13 |
[10] | WANG Zesong (王泽松), ZHANG Zaodi (张早娣), HE Jun (何俊), LEE Jae Choon (李载春), LIU Chuansheng Liu (刘传胜), WU Xianying (吴先映), FU Dejun (付德君). A Computerized System for the Measurement of Nanomaterial Field Emission and Ionization[J]. Plasma Science and Technology, 2012, 14(9): 819-823. DOI: 10.1088/1009-0630/14/9/09 |
1. | Xie, W., Liang, Y., Jiang, Z. et al. Application of three-dimensional MHD equilibrium calculation coupled with plasma response to island divertor experiments on J-TEXT. Plasma Science and Technology, 2024, 26(11): 115104. DOI:10.1088/2058-6272/ad70e1 |
2. | Ding, Y., Wang, N., Chen, Z. et al. Overview of the recent experimental research on the J-TEXT tokamak. Nuclear Fusion, 2024, 64(11): 112005. DOI:10.1088/1741-4326/ad336e |
3. | Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation on the edge cooling threshold of the density limit in the J-TEXT tokamak with limiter and divertor configurations. Plasma Physics and Controlled Fusion, 2024, 66(7): 075010. DOI:10.1088/1361-6587/ad4673 |
4. | Li, C., Liang, Y., Jiang, Z. et al. Characteristics of the SOL ion-to-electron temperature ratio on the J-TEXT tokamak with different plasma configurations. Plasma Science and Technology, 2024, 26(2): 025101. DOI:10.1088/2058-6272/ad0c1e |
5. | Guo, J., Chen, Z., Yang, Q. et al. Simulation of Influence of Plasma Conductivity Anisotropy on Electric Field Distribution in the Divertor Target Biasing Configuration. 2024. DOI:10.1109/CIYCEE63099.2024.10846135 |
6. |
Xu, X., Chen, Z.P., Yang, Q.H. et al. Investigation of edge plasma cooling approaching the density limit in limiter and divertor configurations on J-TEXT. 2023.
![]() |
7. | Wang, J., Chen, Z., Cheng, Z. et al. Impurity emissivity tomographic reconstruction by CCD imaging system on J-TEXT. 2023. DOI:10.1109/CIYCEE59789.2023.10401533 |