Advanced Search+
Peng DENG, Wenzhe MAO, Zhipeng CHEN, Yinan ZHOU, Peng SHI, Zhoujun YANG, Li GAO, Tao LAN, Jinlin XIE, Hong LI, Zian WEI, Adi LIU, Chu ZHOU, Weixing DING, Wandong LIU, Ge ZHUANG. The impact of toroidal mode coupling on high-density discharges in J-TEXT[J]. Plasma Science and Technology, 2024, 26(12): 125101. DOI: 10.1088/2058-6272/ad659f
Citation: Peng DENG, Wenzhe MAO, Zhipeng CHEN, Yinan ZHOU, Peng SHI, Zhoujun YANG, Li GAO, Tao LAN, Jinlin XIE, Hong LI, Zian WEI, Adi LIU, Chu ZHOU, Weixing DING, Wandong LIU, Ge ZHUANG. The impact of toroidal mode coupling on high-density discharges in J-TEXT[J]. Plasma Science and Technology, 2024, 26(12): 125101. DOI: 10.1088/2058-6272/ad659f

The impact of toroidal mode coupling on high-density discharges in J-TEXT

More Information
  • Author Bio:

    Wenzhe MAO: maozhe@ustc.edu.cn

  • Corresponding author:

    Wenzhe MAO, maozhe@ustc.edu.cn

  • Received Date: May 26, 2024
  • Revised Date: July 17, 2024
  • Accepted Date: July 18, 2024
  • Available Online: July 19, 2024
  • Published Date: October 30, 2024
  • Density limit has long been a widely studied issue influencing the operating range of tokamaks. The rapid growth of the m/n = 2/1 (where m and n are poloidal and toroidal mode numbers, respectively) tearing mode is generally regarded as a primary precursor to the density limit disruption. In this experiment, the coupling of the m/n = 1/1 mode and the m/n = 2/1 mode in high-density plasma was observed. During a sawtooth cycle, the frequencies of the two modes gradually converge until they become equal. After that, toroidal coupling occurs between the 1/1 and 2/1 modes, resulting in a mutually fixed phase relationship. With the occurrence of toroidal coupling, the 2/1 mode is stabilized. Prior to the disruption, the cessation of the 1/1 and 2/1 mode coupling, along with the rapid growth in the amplitude of the 2/1 mode, can be observed. Additionally, under the same parameters, comparing discharges with or without the 1/1 mode, it is found that the presence of the 1/1 mode leads to higher plasma density and temperature parameters.

  • The authors would like to express their deepest gratitude to the J-TEXT team for their invaluable support and assistance. This work was supported by National Natural Science Foundation of China (Nos. 12175227 and 51821005), the Fundamental Research Funds for the Central Universities (No. USTC 20210079), and the Collaborative Innovation Program of Hefei Science Center, CAS (No. 2022HSC-CIP022).

  • [1]
    Greenwald M 2002 Plasma Phys. Control. Fusion 44 R27 doi: 10.1088/0741-3335/44/8/201
    [2]
    Greenwald M et al 1988 Nucl. Fusion 28 2199 doi: 10.1088/0029-5515/28/12/009
    [3]
    Vershkov V A and Mirnov S V 1974 Nucl. Fusion 14 383 doi: 10.1088/0029-5515/14/3/012
    [4]
    Sauthoff N R, Von Goeler S and Stodiek W 1978 Nucl. Fusion 18 1445 doi: 10.1088/0029-5515/18/10/012
    [5]
    Equipe T F R 1975 Nucl. Fusion 15 1053 doi: 10.1088/0029-5515/15/6/011
    [6]
    Fredrickson E D et al 1993 Nucl. Fusion 33 1759 doi: 10.1088/0029-5515/33/12/I01
    [7]
    Howard J and Persson M 1992 Nucl. Fusion 32 361 doi: 10.1088/0029-5515/32/3/I02
    [8]
    Kleva R G and Drake J F 1991 Phys. Fluids B 3 372 doi: 10.1063/1.859747
    [9]
    Bondeson A et al 1991 Nucl. Fusion 31 1695 doi: 10.1088/0029-5515/31/9/008
    [10]
    Hegna C C, Callen J D and LaHaye R J 1999 Phys. Plasmas 6 130 doi: 10.1063/1.873265
    [11]
    Carreras B et al 1980 Phys. Fluids 23 1811 doi: 10.1063/1.863206
    [12]
    Fitzpatrick R et al 1993 Nucl. Fusion 33 1533 doi: 10.1088/0029-5515/33/10/I11
    [13]
    Li D and Huo Y P 1993 Phys. Fluids B: Plasma Phys. 5 3737 doi: 10.1063/1.860844
    [14]
    Stix T H 1976 Phys. Rev. Lett. 36 521 doi: 10.1103/PhysRevLett.36.521
    [15]
    Finn J M 1977 Phys. Fluids 20 1749 doi: 10.1063/1.861776
    [16]
    He Y et al 2023 Plasma Phys. Control. Fusion 65 035012 doi: 10.1088/1361-6587/acb00f
    [17]
    Kim G et al 2018 Plasma Phys. Control. Fusion 60 035009 doi: 10.1088/1361-6587/aaa2eb
    [18]
    Guo W P et al 2016 Phys. Plasmas 23 062117 doi: 10.1063/1.4953900
    [19]
    Yang X Q and Zhou D 2018 Phys. Plasmas 25 112504 doi: 10.1063/1.5054701
    [20]
    Brennan D P and Sugiyama L E 2006 Phys. Plasmas 13 052515 doi: 10.1063/1.2202133
    [21]
    Zhuang G et al 2011 Nucl. Fusion 51 094020 doi: 10.1088/0029-5515/51/9/094020
    [22]
    Zhuang G et al 2017 Nucl. Fusion 57 102003 doi: 10.1088/1741-4326/aa6009
    [23]
    Liang Y et al 2019 Nucl. Fusion 59 112016 doi: 10.1088/1741-4326/ab1a72
    [24]
    Zhuang G et al 2009 Plasma Sci. Technol. 11 439 doi: 10.1088/1009-0630/11/4/14
    [25]
    Li J C et al 2014 Rev. Sci. Instrum. 85 11E414 doi: 10.1063/1.4886432
    [26]
    Yang Z J et al 2016 Rev. Sci. Instrum. 87 11E112 doi: 10.1063/1.4960167
    [27]
    Chen J et al 2014 Rev. Sci. Instrum. 85 11D303 doi: 10.1063/1.4891603
    [28]
    Han D L et al 2021 Plasma Sci. Technol. 23 055104 doi: 10.1088/2058-6272/abeeda
    [29]
    Ke X et al 2016 Plasma Sci. Technol. 18 211 doi: 10.1088/1009-0630/18/2/20
    [30]
    Harley T R et al 1989 Nucl. Fusion 29 771 doi: 10.1088/0029-5515/29/5/007
    [31]
    Huang M X et al 2016 Plasma Phys. Control. Fusion 58 125002 doi: 10.1088/0741-3335/58/12/125002
    [32]
    Chen J et al 2014 Rev. Sci. Instrum. 85 103501 doi: 10.1063/1.4896476
    [33]
    Salzedas F et al 2002 Phys. Rev. Lett. 88 075002 doi: 10.1103/PhysRevLett.88.075002
    [34]
    Equipe T F R 1977 Nucl. Fusion 17 1283 doi: 10.1088/0029-5515/17/6/015
    [35]
    Nardone C 1992 Plasma Phys. Control. Fusion 34 1447 doi: 10.1088/0741-3335/34/9/001
    [36]
    Yoshimura S, Maekawa T and Terumichi Y 2002 Phys. Plasmas 9 3378 doi: 10.1063/1.1486449
    [37]
    Li J C et al 2017 Plasma Phys. Control. Fusion 59 085005 doi: 10.1088/1361-6587/aa726c
    [38]
    Ding Y H et al 2018 Plasma Sci. Technol. 20 125101 doi: 10.1088/2058-6272/aadcfd
  • Cited by

    Periodical cited type(5)

    1. Liu, Y., Zang, X., Zhao, S. et al. Degradation of toluene by DBD plasma catalytic technology with CoMn-BTC/ Ti3C2Tx composites. Applied Catalysis A: General, 2025. DOI:10.1016/j.apcata.2025.120180
    2. Cui, W., Chen, S., Duan, J. et al. Surface functional group regulation of Ti3C2Tx based on atmospheric pressure cold plasma. Contributions to Plasma Physics, 2024, 64(9): e202300103. DOI:10.1002/ctpp.202300103
    3. Yang, H., Chen, M.M., Zhang, H.T. et al. Examining homogeneity of dielectric barrier discharge using dispersion normalization and local temperature difference methods. Frontiers in Physics, 2023. DOI:10.3389/fphy.2023.1189371
    4. Wang, M., Li, P., Han, R. et al. Study on the Flow Field Characteristics of Pulse Dielectric Barrier Discharge Jet. 2023. DOI:10.1109/CIEEC58067.2023.10166270
    5. Zhang, Y., Zhu, Y., Tao, S. et al. Plasma-coupled catalysis in VOCs removal and CO2 conversion: Efficiency enhancement and synergistic mechanism. Catalysis Communications, 2022. DOI:10.1016/j.catcom.2022.106535

    Other cited types(0)

Catalog

    Figures(12)

    Article views (48) PDF downloads (13) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return