Citation: | Qingrui ZHOU, Yanjie ZHANG, Chaofeng SANG, Jiaxian LI, Guoyao ZHENG, Yilin WANG, Yihan WU, Dezhen WANG. Simulation of tungsten impurity transport by DIVIMP under different divertor magnetic configurations on HL-3[J]. Plasma Science and Technology, 2024, 26(10): 104003. DOI: 10.1088/2058-6272/ad6817 |
Tungsten (W) accumulation in the core, depending on W generation and transport in the edge region, is a severe issue in fusion reactors. Compared to standard divertors (SDs), snowflake divertors (SFDs) can effectively suppress the heat flux, while the impact of magnetic configurations on W core accumulation remains unclear. In this study, the kinetic code DIVIMP combined with the SOLPS-ITER code is applied to investigate the effects of divertor magnetic configurations (SD versus SFD) on W accumulation during neon injection in HL-3. It is found that the W concentration in the core of the SFD is significantly higher than that of the SD with similar total W erosion flux. The reasons for this are: (1) W impurities in the core of the SFD mainly originate from the inner divertor, which has a short leg, and the source is close to the divertor entrance and upstream separatrix. Furthermore, the W ionization source (SW0) is much stronger, especially near the divertor entrance. (2) The region overlap of SW0 and FW,TOT pointing upstream promote W accumulation in the core. Moreover, the influence of W source locations at the inner target on W transport in the SFD is investigated. Tungsten impurity in the core is mainly contributed by target erosion in the common flux region (CFR) away from the strike point. This is attributed to the fact that the W source at this location enhances the ionization source above the W ion stagnation point, which sequentially increases W penetration. Therefore, the suppression of far SOL inner target erosion can effectively prevent W impurities from accumulating in the core.
This work was supported by National Natural Science Foundation of China (Nos. 12235002 and 12122503), National Key R&D Program of China (No. 2018YFE0301101), Dalian Science & Technology Talents Program (No. 2022RJ11), and Xingliao Talent Project (No. XLYC2203182).
[1] |
Pitts R A et al 2019 Nucl. Mater. Energy 20 100696 doi: 10.1016/j.nme.2019.100696
|
[2] |
Ryutov D D and Soukhanovskii V A 2015 Phys. Plasmas 22 110901 doi: 10.1063/1.4935115
|
[3] |
Zhang Y J et al 2020 Nucl. Mater. Energy 25 100803 doi: 10.1016/j.nme.2020.100803
|
[4] |
Zheng G Y et al 2016 Nucl. Fusion 56 126013 doi: 10.1088/0029-5515/56/12/126013
|
[5] |
Stangeby P C and Elder J D 1992 J. Nucl. Mater. 196–198 258 doi: 10.1016/S0022-3115(06)80042-5
|
[6] |
Wang J et al 2023 Phys. Plasmas 30 043905 doi: 10.1063/5.0137801
|
[7] |
Nichols J H et al 2021 Nucl. Fusion 61 096018 doi: 10.1088/1741-4326/ac14e6
|
[8] |
Guo J et al 2021 Plasma Phys. Control. Fusion 63 125006 doi: 10.1088/1361-6587/ac2afa
|
[9] |
Xu G L et al 2022 Nucl. Mater. Energy 33 101259 doi: 10.1016/j.nme.2022.101259
|
[10] |
Kumpulainen H A et al 2020 Nucl. Mater. Energy 25 100784 doi: 10.1016/j.nme.2020.100784
|
[11] |
Wang H et al 2022 Nucl. Fusion 62 126018 doi: 10.1088/1741-4326/ac8fa4
|
[12] |
Ma X et al 2020 Phys. Scr. T171 014072 doi: 10.1088/1402-4896/ab4a39
|
[13] |
Sinclair G et al 2022 Nucl. Fusion 62 106024 doi: 10.1088/1741-4326/ac8b95
|
[14] |
Abrams T et al 2021 Phys. Scr. 96 124073 doi: 10.1088/1402-4896/ac3c5f
|
[15] |
Maeker J B et al 2022 Nucl. Mater. Energy 33 101309 doi: 10.1016/j.nme.2022.101309
|
[16] |
Zamperini S A et al 2022 Nucl. Fusion 62 026037 doi: 10.1088/1741-4326/ac3fe7
|
[17] |
Zamperini S et al 2023 Fusion Sci. Technol. 79 36 doi: 10.1080/15361055.2022.2082791
|
[18] |
Gao S L et al 2021 AIP Adv. 11 025233 doi: 10.1063/5.0037381
|
[19] |
Gao S L et al 2022 Plasma Sci. Technol. 24 075104 doi: 10.1088/2058-6272/ac608f
|
[20] |
Wang Y L et al 2021 Plasma Phys. Control. Fusion 63 085002 doi: 10.1088/1361-6587/ac0351
|
[21] |
Wang Y L et al 2023 Nucl. Fusion 63 096024 doi: 10.1088/1741-4326/aceb09
|
[22] |
Gallo A et al 2020 Phys. Scr. T171 014013 doi: 10.1088/1402-4896/ab4308
|
[23] |
Ciraolo G et al 2021 Nucl. Fusion 61 126015 doi: 10.1088/1741-4326/ac2439
|
[24] |
Di Genova S et al 2021 Nucl. Fusion 61 106019 doi: 10.1088/1741-4326/ac2026
|
[25] |
Schneider R et al 2006 Contrib. Plasma Phys. 46 3 doi: 10.1002/ctpp.200610001
|
[26] |
Makkonen T et al 2011 J. Nucl. Mater. 415 S479 doi: 10.1016/j.jnucmat.2010.08.023
|
[27] |
Elder J D et al 2005 J. Nucl. Mater. 337–339 79 doi: 10.1016/j.jnucmat.2004.10.138
|
[28] |
Xu Y C et al 2021 Plasma Phys. Control. Fusion 63 095003 doi: 10.1088/1361-6587/ac11b3
|
[29] |
Zhao X L et al 2022 Nucl. Fusion 62 126071 doi: 10.1088/1741-4326/ac9b77
|
[30] |
Zhang Y J et al 2022 Nucl. Fusion 62 106006 doi: 10.1088/1741-4326/ac8564
|
[31] |
Petrie T W et al 2008 Nucl. Fusion 48 045010 doi: 10.1088/0029-5515/48/4/045010
|
[32] |
Warrier M, Schneider R and Bonnin X 2004 Comput. Phys. Commun. 160 46 doi: 10.1016/j.cpc.2004.02.011
|
[33] |
Cupak C et al 2021 Appl. Surf. Sci. 570 151204 doi: 10.1016/j.apsusc.2021.151204
|
[34] |
Ding R et al 2016 Nucl. Fusion 56 016021 doi: 10.1088/0029-5515/56/1/016021
|
[35] |
Krieger K et al 1999 J. Nucl. Mater. 266–269 207 doi: 10.1016/S0022-3115(98)00890-3
|
[36] |
Schmid K et al 2010 Nucl. Fusion 50 105004 doi: 10.1088/0029-5515/50/10/105004
|
[37] |
Zhou Q R et al 2020 Nucl. Mater. Energy 25 100849 doi: 10.1016/j.nme.2020.100849
|
[38] |
Wang L et al 2022 Nucl. Fusion 62 076002 doi: 10.1088/1741-4326/ac4774
|
[39] |
Hitzler F et al 2020 Plasma Phys. Control. Fusion 62 085013 doi: 10.1088/1361-6587/ab9b00
|
[40] |
Zhao X L et al 2020 Plasma Phys. Control. Fusion 62 055015 doi: 10.1088/1361-6587/ab831b
|
[41] |
Guo J et al 2023 Nucl. Fusion 63 126033 doi: 10.1088/1741-4326/ad00cc
|
[42] |
Stangeby P C 2000 The Plasma Boundary of Magnetic Fusion Devices (Boca Raton: CRC Press
|
[43] |
Wang H et al 2024 Nucl. Fusion 64 046009 doi: 10.1088/1741-4326/ad29bc
|
[44] |
Dux R et al 2011 Nucl. Fusion 51 119501 doi: 10.1088/0029-5515/51/11/119501
|
[1] | Chundong HU (胡纯栋), Yahong XIE (谢亚红), Yongjian XU (许永建), Caichao JIANG (蒋才超), Jianglong WEI (韦江龙), Yuming GU (顾玉明), Qinglong CUI (崔庆龙), Lizhen LIANG (梁立振), Shiyong CHEN (陈世勇), Yuanlai XIE (谢远来). Achievement of 1000 s plasma generation of RF source for neutral beam injector[J]. Plasma Science and Technology, 2019, 21(2): 22001-022001. DOI: 10.1088/2058-6272/aaf1e0 |
[2] | Chundong HU (胡纯栋), Yongjian XU (许永建), Yuanlai XIE (谢远来), Yahong XIE (谢亚红), Lizhen LIANG (梁立振), Caichao JIANG (蒋才超), Sheng LIU (刘胜), Jianglong WEI (韦江龙), Peng SHENG (盛鹏), Zhimin LIU (刘智民), Ling TAO (陶玲), the NBI Team. Thermal analysis of EAST neutral beam injectors for long-pulse beam operation[J]. Plasma Science and Technology, 2018, 20(4): 45602-045602. DOI: 10.1088/2058-6272/aaa4f0 |
[3] | Doo-Hee CHANG, Seung Ho JEONG, Min PARK, Tae-Seong KIM, Bong-Ki JUNG, Kwang Won LEE, Sang Ryul IN. Discharge Characteristics of Large-Area High-Power RF Ion Source for Positive and Negative Neutral Beam Injectors[J]. Plasma Science and Technology, 2016, 18(12): 1220-1225. DOI: 10.1088/1009-0630/18/12/13 |
[4] | K. HANADA, H. ZUSHI, H. IDEI, K. NAKAMURA, M. ISHIGURO, S. TASHIMA, E. I. KALINNIKOVA, Y. NAGASHIMA, M. HASEGAWA, A. FUJISAWA, A. HIGASHIJIMA, S. KAWASAKI, H. NAKASHIMA, O. MITARAI, A. FUKUYAMA, Y. TAKASE, X. GAO, H. LIU, J. QIAN, M. ONO, R. RAMAN. Power Balance Estimation in Long Duration Discharges on QUEST[J]. Plasma Science and Technology, 2016, 18(11): 1069-1075. DOI: 10.1088/1009-0630/18/11/03 |
[5] | XU Handong (徐旵东), WANG Xiaojie (王晓洁), LIU Fukun (刘甫坤), ZHANG Jian (张健), HUANG Yiyun (黄懿赟), SHAN Jiafang (单家方), WU Dajun (吴大俊), HU Huaichuan (胡怀传), LI Bo (李波), LI Miaohui (李妙辉), YANG Yong (杨永), FENG Jianqiang (冯建强), XU Weiye (徐伟业), TANG Yunying (汤允迎), WEI Wei (韦维), XU Liqing (徐立清), LIU Yong (刘永), ZHAO Hailin (赵海林), J. LOHR, Y. A. GORELOV, J. P. ANDERSON, MA Wendong (马文东), WU Zege (吴则革), WANG Jian (王健), ZHANG Liyuan (张立元), GUO Fei(郭斐), SUN Haozhang (孙浩章), YAN Xinsheng (闫新胜), EAST Team. Development and Preliminary Commissioning Results of a Long Pulse 140 GHz ECRH System on EAST Tokamak (Invited)[J]. Plasma Science and Technology, 2016, 18(4): 442-448. DOI: 10.1088/1009-0630/18/4/19 |
[6] | HUANG Haihong(黄海宏), YIN Ming(殷明), WANG Haixin(王海欣). Design of Controller for New EAST Fast Control Power Supply[J]. Plasma Science and Technology, 2014, 16(11): 1068-1073. DOI: 10.1088/1009-0630/16/11/13 |
[7] | M. MATSUKAWA, K. SHIMADA, K. YAMAUCHI, E. GAIO, A. FERRO, L. NOVELLO. A Conceptual Design Study for the Error Field Correction Coil Power Supply in JT-60SA[J]. Plasma Science and Technology, 2013, 15(3): 257-260. DOI: 10.1088/1009-0630/15/3/13 |
[8] | HU Chundong (胡纯栋) for the NBI team. Achievement of 100 s Long Pulse Neutral Beam Extraction in EAST Neutral Beam Injector[J]. Plasma Science and Technology, 2013, 15(3): 201-203. DOI: 10.1088/1009-0630/15/3/01 |
[9] | K. SHIMADA, T. TERAKADO, K. YAMAUCHI, M. MATSUKAWA, O. BAULAIGUE, R. COLETTI, A. COLETTI, L. NOVELLO. Minimization of Reactive Power Fluctuation in JT-60SA Magnet Power Supply[J]. Plasma Science and Technology, 2013, 15(2): 184-187. DOI: 10.1088/1009-0630/15/2/22 |
[10] | XU Weidong (徐伟东), XUAN Weimin (宣伟民), YAO Lieying (姚列英), WANG Yingqiao (王英翘). Development of 8 MW Power Supply Based on Pulse Step Modulation Technique for Auxiliary Heating System on HL-2A[J]. Plasma Science and Technology, 2012, 14(3): 263-268. DOI: 10.1088/1009-0630/14/3/14 |